首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the logic of designing nature reserves to understand better how to integrate the concepts of representativeness and persistence. Simple models of viability are used to evaluate how the expected number of species in the reserve system changes with variation in the risk of extinction among species, their rate of occurrence, and the distribution of species. The optimal size of individual reserves increased with the mean and variance of the probability of extinction among species and with the rate at which the risk of extinction declines with the cost of each reserve. In contrast, the rate of occurrence of species within reserves and their rate of accumulation with increasing reserve area had a relatively minor influence on the optimal size of reserves. Patterns of endemism were most important for the location of reserves. Including differences among species in the analysis reduced the optimal number of individual reserves (and increased the size of each) when operating under a fixed budget compared with reserve designs based on single species. A case study in the city of Melbourne, Australia, demonstrates the conservation value of small (approximately 1 ha) grassland reserves and the underrepresentation of Melbourne's volcanic plains in the region's conservation network.  相似文献   

2.
Hunting is one of the human activities that directly affect wildlife and has received increasing attention given its socioeconomic dimensions. Most studies have been conducted on coastal and wetland areas and showed that hunting activity can greatly affect bird behaviour and distribution. Hunting-free reserves for game species are zones where birds find an area of reduced disturbance. We evaluated the effect of hunting activities on the behaviour and use of hunting-free areas of lapwings Vanellus vanellus , golden plovers Pluvialis apricaria and little bustards Tetrax tetrax in agricultural areas. We compared the habitat use and behaviour of birds on days before, during and after hunting took place. All three studied species showed strong behavioural responses to hunting activities. Hunting activity increased flight probability and time spent vigilant (higher on hunting days than just before and after a hunting day), to the detriment of resting. We also found distributional (use of hunting-free reserve) responses to hunting activities, with hunting-free reserves being used more frequently during hunting days. Thus, reserves can mitigate the disturbance caused by hunting activities, benefiting threatened species in agricultural areas. Increasing the size or number of hunting-free areas might be an important management and conservation tool to reduce the impacts of hunting activities.  相似文献   

3.
How to resolve the SLOSS debate: Lessons from species-diversity models   总被引:1,自引:0,他引:1  
The SLOSS debate - whether a single large reserve will conserve more species than several small - of the 1970s and 1980s never came to a resolution. The first rule of reserve design states that one large reserve will conserve the most species, a rule which has been heavily contested. Empirical data seem to undermine the reliance on general rules, indicating that the best strategy varies from case to case. Modeling has also been deployed in this debate. We may divide the modeling approaches to the SLOSS enigma into dynamic and static approaches. Dynamic approaches, covered by the fields of island equilibrium theory of island biogeography and metapopulation theory, look at immigration, emigration, and extinction. Static approaches, such as the one in this paper, illustrate how several factors affect the number of reserves that will save the most species.This article approaches the effect of different factors by the application of species-diversity models. These models combine species-area curves for two or more reserves, correcting for the species overlap between them. Such models generate several predictions on how different factors affect the optimal number of reserves. The main predictions are: Fewer and larger reserves are favored by increased species overlap between reserves, by faster growth in number of species with reserve area increase, by higher minimum-area requirements, by spatial aggregation and by uneven species abundances. The effect of increased distance between smaller reserves depends on the two counteracting factors: decreased species density caused by isolation (which enhances minimum-area effect) and decreased overlap between isolates. The first decreases the optimal number of reserves; the second increases the optimal number. The effect of total reserve-system area depends both on the shape of the species-area curve and on whether overlap between reserves changes with scale.The approach to modeling presented here has several implications for conservational strategies. It illustrates well how the SLOSS enigma can be reduced to a question of the shape of the species-area curve that is expected or generated from reserves of different sizes and a question of overlap between isolates (or reserves).  相似文献   

4.
Even Tjrve 《Ecography》2002,25(1):17-24
This paper discusses species diversity in simple multi-habitat environments. Its main purpose is to present simple mathematical and graphical models on how landscape patterns affect species numbers. The idea is to build models of species diversity in multi-habitat landscapes by combining species-area curves for different habitats. Predictions are made about how variables such as species richness and species overlap between habitats influence the proportion of the total landscape each habitat should constitute, and how many habitats it should be divided into in order to be able to sustain the maximal number of species. Habitat size and numbers are the only factors discussed here, not habitat spatial patterns. Among the predictions are: 1) where there are differences in species diversity between habitats, optimal landscape patterns contain larger proportions of species rich habitats. 2) Species overlap between habitats shifts the optimum further towards larger proportions of species rich habitat types. 3) Species overlap also shifts the optimum towards fewer habitat types. 4) Species diversity in landscapes with large species overlap is more resistant to changes in landscape (or reserve) size. This type of model approach can produce theories useful to nature and landscape management in general, and the design of nature reserves and national parks in particular.  相似文献   

5.
We develop a probabilistic approach to optimum reserve design based on the species-area relationship. Specifically, we focus on the distribution of areas among a set of reserves maximizing biodiversity. We begin by presenting analytic solutions for the neutral case in which all species have the same colonization probability. The optimum size distribution is determined by the local-to-regional species richness ratio k. There is a critical k(t) ratio defined by the number of reserves raised to the scaling exponent of the species-area relationship. Below k(t), a uniform area distribution across reserves maximizes biodiversity. Beyond k(t), biodiversity is maximized by allocating a certain area to one reserve and uniformly allocating the remaining area to the other reserves. We proceed by numerically exploring the robustness of our analytic results when departing from the neutral assumption of identical colonization probabilities across species.  相似文献   

6.
It is crucial for biodiversity conservation that protected areas are large and effective enough to support viable populations of their original species. We used a point count distance sampling method to estimate population sizes of a range of bird species in three Atlantic forest protected areas of size 5600, 22,500, and 46,050 ha. Population sizes were generally related to reserve area, although in the mid-sized reserve, there were many rare species reflecting a high degree of habitat heterogeneity. The proportions of forest species having estimated populations >500 ranged from 55% of 210 species in the largest reserve to just 25% of 140 species in the smallest reserve. All forest species in the largest reserves had expected populations >100, but in the small reserve, 28% (38 species) had populations <100 individuals. Atlantic forest endemics were no more or less likely to have small populations than widespread species. There are 79 reserves (>1000 ha) in the Atlantic forest lowlands. However, all but three reserves in the north of the region (Espírito Santo and states north) are smaller than 10,000 ha, and we predict serious levels of local extinction from these reserves. Habitat heterogeneity within reserves may promote species richness within them, but it may also be important in determining species loss over time by suppressing populations of individual species. We suggest that most reserves in the region are so small that homogeneity in the habitat/altitude within them is beneficial for maintenance of their (comparatively small) original species compliment. A lack of protection in the north, continued detrimental human activity inside reserves, and our poor knowledge of how well the reserve system protects individual taxa, are crucial considerations in biodiversity management in the region.  相似文献   

7.
Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low‐extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high‐extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter.  相似文献   

8.
Marine reserves (no-take zones) are widely recommended asconservation and fishery management tools. One potential benefitof marine reserves is that they can reduce fishing mortality.This can lead to increases in the abundance of spawners,providing insurance against recruitment failure and maintainingor enhancing yields in fished areas. This paper considers thefactors that influence recovery following marine reserveprotection, describes patterns of recovery in numbers andbiomass, and suggests how recovery rates can be predicted.Population recovery is determined by initial population size, theintrinsic rate of population increase r, and the degree ofcompensation (increases in recruits per spawner as spawnerabundance falls) or depensation (lower than expected recruitmentat low abundance, Allee effect) in the spawner-recruitrelationship. Within a reserve, theoretical recovery rates arefurther modified by metapopulation structure and the success ofindividual recruitment events. Recovery also depends on theextent of reductions in fishing mortality (F) as determined bythe relationship between patterns of movement, migration, anddensity-dependent habitat use (buffer effect) in relation to thesize, shape and location of the reserve. The effects ofreductions in F on population abundance have been calculatedusing a variety of models that incorporate transfer rates betweenthe reserve and fished areas, fishing mortality outside thereserve and life history parameters of the population. Thesemodels give useful indications of increases in production andbiomass (as yield per recruit and spawners per recruitrespectively) due to protection, but do not address recruitment.Many reserves are very small in relation to the geographicalrange of fish or invertebrate populations. In these reserves itmay be impossible to distinguish recovery due to populationgrowth from that due to redistribution. Mean rates of recoverycan be predicted from r, but the methods are data intensive. Thisis ironic when marine reserves are often favoured for managementor conservation in data-poor situations where conventional stockassessment is impossible. In these data-poor situations, it maybe possible to predict recovery rates from very low populationsizes by using maximum body size or age at maturity as simplecorrelates of the intrinsic rate of natural increase.  相似文献   

9.
The expected number of species occurring in different numbers of reserves of the same total area is examined on different assumptions of the spatial distribution and the probability of extinction. The advantage of one large reserve or several smaller ones of equal total area depends on the spatial distributions of species and the stage after the establishement of reserves. In general, several smaller reserves maintain more species immediately after the establishments unless the spatial distribution are uniform or random, whereas one large reserve excels several smaller ones after some rare species have gone extinct unless the spatial distributions are strongly contagious. Since the extinction of rare species must be facilitated as the size of each reserve reduces, the area of a reserve should be larger than the critical area that ensures the persistence of the species. Hence it is concluded that one or a few large reserves are a better strategy in order to maintain the species diversity.  相似文献   

10.
Protected areas are crucial for Amazonian nature conservation. Many Amazonian reserves have been selected systematically to achieve biodiversity representativeness. We review the role natural-scientific understanding has played in reserve selection, and evaluate the theoretical potential of the existing reserves to cover a complete sample of the species diversity of the Amazonian rainforest biome. In total, 108 reserves (604,832 km2) are treated as strictly protected and Amazonian; 87 of these can be seen as systematically selected to sample species diversity (75.3% of total area). Because direct knowledge on all species distributions is unavailable, surrogates have been used to select reserves: direct information on some species distributions (15 reserves, 14.8% of total area); species distribution patterns predicted on the basis of conceptual models, mainly the Pleistocene refuge hypothesis, (5/10.3%); environmental units (46/27.3%); or a combination of distribution patterns and environmental units (21/22.9%). None of these surrogates are reliable: direct information on species distributions is inadequate; the Pleistocene refuge hypothesis is highly controversial; and environmental classifications do not capture all relevant ecological variation, and their relevance for species distribution patterns is undocumented. Hence, Amazonian reserves cannot be safely assumed to capture all Amazonian species. To improve the situation, transparency and an active dialogue with the scientific community should be integral to conservation planning. We suggest that the best currently available approach for sampling Amazonian species diversity in reserve selection is to simultaneously inventory indicator plant species and climatic and geological conditions, and to combine field studies with remote sensing.  相似文献   

11.
The eastern portion of the Camargue in southern France is divided into two parts: a natural wetland area of 2800 ha and an agricultural area of 5045 ha. In 1984 and 1989, a new protected area (1000 ha) was created on two contiguous former hunting estates. Analysis of aerial photographs (1968–1998) in conjunction with a field survey revealed, from 1984 to 1998, an increase of management for waterfowl hunting in natural wetlands located on the periphery of the new reserve, and a similar increase in the agricultural area amongst residual wetlands and former rice fields. Based on monthly aerial censuses, the size of the waterfowl population in the winter increased in this part of the delta by a factor of 3.8 following the creation of the reserve. Our results suggest that the creation of a reserve on former hunting estates resulted in greater attractiveness for ducks but also in the development of commercial hunting activity around the edge. This development increased fragmentation and uniformity of natural areas, including the loss of the unique Cladium mariscus habitat in the Camargue and resulted in the spatial expansion of waterfowl hunting areas in agricultural areas. It is associated with an increase in financial profit from waterfowl hunting. Our study highlights unexpected costs for nature conservation associated with the creation of a reserve. It illustrates the need for new models of wetland conservation where protection goals are not restricted to reserves, but also integrate conservation and economic development outside the protected areas.  相似文献   

12.
Forecasting the effects of climate change on species and populations is a fundamental goal of conservation biology, especially for montane endemics which seemingly are under the greatest threat of extinction given their association with cool, high elevation habitats. Species distribution models (also known as niche models) predict where on the landscape there is suitable habitat for a species of interest. Correlative niche modeling, the most commonly employed approach to predict species' distributions, relies on correlations between species' localities and current environmental data. This type of model could spuriously forecast less future suitable habitat because species' current distributions may not adequately represent their thermal tolerance, and future climate conditions may not be analogous to current conditions. We compared the predicted distributions for three montane species of Plethodon salamanders in the southern Appalachian Mountains of North America using a correlative modeling approach and a mechanistic model. The mechanistic model incorporates species-specific physiology, morphology and behavior to predict an annual energy budget on the landscape. Both modeling approaches performed well at predicting the species' current distributions and predicted that all species could persist in habitats at higher elevation through 2085. The mechanistic model predicted more future suitable habitat than the correlative model. We attribute these differences to the mechanistic approach being able to model shifts in key range-limiting biological processes (changes in surface activity time and energy costs) that the correlative approach cannot. Choice of global circulation model (GCM) contributed significantly to distribution predictions, with a tenfold difference in future suitability based on GCM, indicating that GCM variability should be either directly included in models of species distributions or, indirectly, through the use of multi-model ensemble averages. Our results indicate that correlative models are over-predicting habitat loss for montane species, suggesting a critical need to incorporate mechanisms into forecasts of species' range dynamics.  相似文献   

13.
Macaques are found both in broadleaf evergreen forest and in more variable habitats. The former group might be expected to be subject to less variability in their environment and hence to suffer lower rates of density independent mortality. Life history evolution models predict that species in such conditions will have lower rates of development and breeding than those found in more variable habitats where density independent mortality is high. This prediction is tested here by comparing the breeding and development rates of nine species of macaque. Although measures of developmental rate are not found to vary in a predictable way with habitat, measures of breeding rate do correlate with habitat categories used. As predicted, species that are found in more variable habitats tend to have higher birth rates and a higher intrinsic rate of natural increase than do species in more stable, forest habitats. Contrary to prediction selection does not always act to produce an early age at first reproduction in macaques living in seasonal environments. This is discussed with relation to physiological and environmental constraints.  相似文献   

14.
刘昊奇  吕光辉 《生态学报》2018,38(9):3272-3280
由于生境丧失日益严重,很难找到一片未被破坏的生境建立自然保护区,因而在设计保护区时,必须处理生境丧失带来的影响。在一个已经遭受过生境丧失的景观上,选取一片正方形的区域,并调整区域的面积以保证其中未被破坏生境的面积为一个固定常数,探讨将未被破坏的生境建设成大量小保护区还是少量大保护区。结果表明:(1)随机的生境丧失下,生境丧失比例越高,少量大保护区模式的优势越明显。(2)即使生境丧失比例恒定,被破坏生境的空间分布形式也有重要影响——被破坏生境的空间聚集程度越高,大量小保护区模式的优势越明显。(3)增加扩散率或降低扩散死亡率可导致从少量大保护区更有利于物种到大量小保护区更有利的转变,且被破坏生境的聚集程度越高,转变的程度越高。以上结论为自然保护区设计提供了理论依据。  相似文献   

15.
Insular biogeography of mammals in Canadian parks: a re-analysis   总被引:1,自引:0,他引:1  
Aim Glenn & Nudds (1989) compared mammal species richness in Canadian parks to estimated species-area relationships prior to European settlement to test if parks presently contain their historical compliment of species. However, the data they used to estimate the presettlement species-area relationships were not commensurate with the scale of the parks and were not independent. This uncertainty reduces the utility of Glenn and Nudds analysis to detect which, if any, parks are experiencing mammal extirpations and ultimately to direct conservation efforts to enhance mammal conservation in Canada. We improved Glenn and Nudds methods and re-assesed the conservation status of mammals in Canadian parks. Location Canada. Methods We constructed species-area curves for disturbance tolerant and intolerant species in five mammal regions of Canada by sampling historical range maps using plots of 10– 10,000 km2. We compared these estimates of expected species richness to current species richness in thirty-six parks and contrast our results with those of Glenn and Nudds. Results All ten re-estimated species-area regressions had higher intercepts than those reported by Glenn and Nudds; four had lower slopes. Of seventy-two cases analysed, we found twenty in which parks had fewer species than expected and four in which parks had more species than expected, compared to fourteen and thirty-three, respectively, reported by Glenn and Nudds. Changes in both the regression parameters and increases in the prediction intervals accounted for the disparity between these results. Park residuals were not significantly different from zero in eight of ten analyses. Residuals for parks in the Alleghenian-Illinoian mammal province were negative and decreased with increasing park size. Main conclusions Improvement of Glenn and Nudds methods had an effect on both the parameter estimates and precison of the presettlement species-area curves. As a result, mammal conservation in some Canadian parks is worse than Glenn and Nudds reported. Six additional parks contained fewer disturbance intolerant species than predicted. However, Glenn and Nudds finding of systematic differences between expected and observed species richness in parks in the densely populated region of southern Ontario, southern Quebec and the maritime provinces was not an artefact of their methods. In this region, seven of ten parks appear to have lost disturbance-sensitive species of mammals. The pattern of species loss in this region was consistent with the idea that these parks have become isolated from mammal dispersal by surrounding habitat change and have experienced local species extirpations.  相似文献   

16.
1. A critical need in conservation biology is to determine which species are most vulnerable to extinction. Freshwater mussels (Bivalvia: Unionacea) are one of the most imperilled faunal groups globally. Freshwater mussel larvae are ectoparasites on fish and depend on the movement of their hosts to maintain connectivity among local populations in a metapopulation. 2. I calculated local colonisation and extinction rates for 16 mussel species from 14 local populations in the Red River drainage of Oklahoma and Texas, U.S. I used general linear models and AIC comparisons to determine which mussel life history traits best predicted local colonisation and extinction rates. 3. Traits related to larval dispersal ability (host infection mode, whether a mussel species was a host generalist or specialist) were the best predictors of local colonisation. 4. Traits related to local population size (regional abundance, time spent brooding) were the best predictors of local extinction. The group of fish species used as hosts by mussels also predicted local extinction and was probably related to habitat fragmentation and host dispersal abilities. 5. Overall, local extinction rates exceeded local colonisation rates, indicating that local populations are becoming increasingly isolated and suffering an ‘extinction debt’. This study demonstrates that analysis of species traits can be used to predict local colonisation and extinction patterns and provide insight into the long‐term persistence of populations.  相似文献   

17.
The optimal size of nature reserves has been debated for some time. Although edge and core habitats are often recognized, it is commonly assumed in theory and in studies of a particular habitat type that reserves or patches of different sizes have similar habitat structure. However, for older, highly fragmented landscapes it has been suggested that small areas are of conservation interest as high-quality remnants, whereas large areas are more degraded. We studied 49 randomly selected forest reserves in the size range 5–230 ha (typical for many highly fragmented landscapes) and 3653 sites of key habitat (unprotected deciduous broadleaf forest). Structures in forest that are generally correlated with value for biodiversity were measured, and reserve objectives were examined from declaration texts. Both the density of large trees and the density of dead wood (snags, logs) decreased with increasing reserve size. The mean size of identified key habitats was very small (1.6 ha). A botanical objective for establishment of reserves was more frequently used for smaller reserves. In contrast, cultural and especially recreational objectives were more commonly used when larger reserves were established, suggesting higher values for recreation in these reserves. For vascular plants, birds and beetles, a literature review indicated that small forest patches do not contain impoverished communities, but are often rich (per unit of area). Small reserves and key habitats have several disadvantages, but they are probably important components of reserve networks for biodiversity in highly fragmented landscapes.  相似文献   

18.
Catastrophic events, like oil spills and hurricanes, occur in many marine systems. One potential role of marine reserves is buffering populations against disturbances, including the potential for disturbance-driven population collapses under Allee effects. This buffering capacity depends on reserves in a network providing rescue effects, setting up a tradeoff where reserves need to be connected to facilitate rescue, but also distributed in space to prevent simultaneous extinction. We use a set of population models to examine how dispersal ability and the disturbance regime interact to determine the optimal reserve spacing. We incorporate fishing in a spatially-explicit model to understand the effect of objective choice (e.g. conservation versus fisheries yield) on the optimal reserve spacing. We show that the optimal spacing between reserves increases when accounting for catastrophes with larger spacing needed when Allee effects interact with catastrophes to increase the probability of extinction. We also show that classic tradeoffs between conservation and fishing objectives disappear in the presence of catastrophes. Specifically, we found that at intermediate levels of disturbance, it is optimal to spread out reserves in order to increase both population persistence and to maximize spillover into non-reserve areas.  相似文献   

19.
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20‐year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community‐level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five‐region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.  相似文献   

20.
Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species’ long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号