首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreased reproductive performance due to summer stress is a well known phenomenon in farm livestock. Whether this occurs in the mare and specifically how this might affect postpartum reproductive activity and performance, especially at Foal Heat (FH), is unknown. This study, therefore, aims to investigate this and the factors that might affect postpartum reproductive activity. Reproductive records of 228 Thoroughbred mares (694 mare years) bred in subtropical north-western India were retrospectively analysed. Overt oestrous activity occurred within 21 d postpartum in 92.94% (645/694) of mares. Significantly (p < 0.001) more April foaling mares (97.37%, 185/190) expressed postpartum oestrous activity than those foaling in January (83.61%; 51/61) and February (88.49; 123/139). Similarly significantly (p < 0.01) fewer multiparous mares failed to demonstrate oestrous activity than primiparous mares (6.12% vs.15.07%; 38/621 vs. 11/73, respectively). 190 of these 694 mares were additionally monitored to confirm ovulation; in these mares onset of FH (oestrus plus confirmed ovulation) occurred 8.42 ± 0.17 d and first ovulation 13.64 ± 0.20 d postpartum. Month, stud farm, year, and parity did not affect interval from parturition to FH onset or to first ovulation; or FH onset to ovulation. In FH bred mares Day 16 pregnancy rate and overall foaling rate were 53.76% (100/186) and 46.24% (86/186) respectively and were similar to those of mares bred later postpartum. FH pregnancy rates were not affected by stud, season, month, year, number of matings, or day of ovulation but were significantly (p < 0.008) lowered by increasing mare age. Significantly (p < 0.01) lower Day 16 pregnancy rates were observed in uterine treated mares compared to untreated mares (31.09% vs. 57.96%; 9/29 vs. 91/157, respectively), this difference was not evident during the rest of pregnancy. In conclusion, postpartum reproductive and ovarian activity appears to be affected by environment, i.e., delayed in subtropical kept Thoroughbred mares compared to those kept in temperate climates. However, resulting reproductive performance at FH and the factors affecting postpartum reproductive activity are similar.  相似文献   

2.
The Catalonian donkey breed is in danger of extinction, and much needs to be learned about the reproductive features of its females if breeding and conservation programmes are to be successful. This study reports the oestrous behaviour, oestrus cycle characteristics and dynamic ovarian events witnessed during 50 oestrous cycles (involving 106 ovulations) in 10 Catalonian jennies between March 2002 and January 2005. These jennies were teased, palpated transrectally and examined by ultrasound using a 5 MHz linear transducer-daily during oestrus and every other day during dioestrus. Predictors of ovulation were sought among the variables recorded. The most evident signs of oestrus were mouth clapping (the frequent vertical opening and closing of the mouth with ears depressed against the extended neck) and occasional urinating and winking of the vulval lips (homotypical behaviour). Interactions between jennies in oestrus were also recorded, including mounting, herding/chasing, the Flehmen response, and vocalization (heterotypical behaviour). Nine jennies ovulated regularly throughout the year; one had two anovulatory periods (54 and 35 days). The length of the oestrus cycle was 24.90 +/- 0.26 days, with oestrus itself lasting 5.64 +/- 0.20 days (mean +/- S.E.M.) and dioestrus 19.83 +/- 0.36 days. The incidence of single, double and triple ovulations was 55.66% (n=59), 42.45% (n=45) and 1.89% (n=2), respectively. No significant difference was seen in the number of ovulations involving the left and right ovaries (52.63% [n=70] compared to 47.37% [n=63] respectively; P>0.05). The mean interval between double ovulation was 1.44 +/- 3.98 days. The mean diameter of the preovulatory follicle at day -1 was 44.9 +/- 0.5 mm; the mean growth rate over the 5 days before ovulation was 3.7 mm/day. Data on preovulatory changes in oestrous behaviour, follicle size, follicle texture, the echographic appearance of the follicle and uterus, and uterine tone were subjected to stepwise logistic regression analysis to detect predictors of ovulation. The logit function showed the best predictors to be follicle size, follicular texture and oestrous behaviour. Certain combinations of these three variables allow the prediction of ovulation within 24 h with a probability of >75%.  相似文献   

3.
The pattern of steroid hormone concentrations in the blood plasma of five mares was determined throughout eight oestrous cycles by radioimmunoassay. In three other mares the steroid hormone concentrations in the follicular fluid of 16 isolated follicles (⪖ 1 cm diameter) from both ovaries were analyzed on the first and third day of behavioural oestrus.The plasma levels of pregnenolone and progesterone as well as their 17α-hydroxylated metabolites showed similar ranges of concentration throughout the oestrous cycle. Luteolysis occurred 6 days prior to ovulation and was accompanied by a drop of all progestagens. Throughout the oestrous period (5 days prior to and including the day of ovulation) mean plasma concentrations of progestagens were <0.5 ng/ml and increased significantly one day after ovulation. Maximum plateau values were reached on day 6 after ovulation. A distinct (but not statistically significant) rise of androstenedione and testosterone plasma levels occurred during oestrus whereas dehydroepiandrosterone values increased significantly 6 days prior to ovulation and reached a maximum mean value of 1.14 ng/ml one day before ovulation. Levels then declined significantly on the day of ovulation. Oestrone and oestradiol-17β plasma concentrations increased significantly 4 and 3 days prior to the day of ovulation, respectively, and both remained elevated until one day before ovulation.A significant positive correlation could be detected between increasing follicle diameters and androstenedione as well as oestradiol-17β concentrations in the follicular fluid, whereas pregnenolone values showed a negative correlation with follicular diameter. Oestradiol-17β could be determined in 9 of the 16 follicular fluid samples. In 8 of these 9, oestradiol-17β predominated over all other steroid hormones.In view of the low concentrations of dehydroepiandrosterone detected in the follicular fluid, it is suggested that the increase in peripheral plasma values during oestrus is caused by an extra-follicular source(s).  相似文献   

4.
Foal heat was significantly delayed in 15 Thoroughbred and Quarter-horse mares by 200 mg progesterone in oil from Days 5--14 post partum. Nine of these mares subsequently received daily i.v. injections of 2 mg of a synthetic GnRH preparation (AY-24,031) from Day 2 of the progesterone-delayed oestrus but this treatment did not significantly shorten oestrus or hasten ovulation. Uterine biopsies taken on Day 15 post partum from all the mares showed a mixed endometrial morphology having both oestrous and dioestrous characteristics. There was an increased proliferation of endometrial glands in these animals at the time of ovulation compared to control mares having a normal foal heat.  相似文献   

5.
Service records of 253 mares (1181 mare-years) spanning over 7 consecutive years, from nine organized Thoroughbred stud farms, situated in the subtropical northwestern India were retrospectively analyzed to assess their reproductive performance. The overall per cycle pregnancy rate at Day 16 and overall foaling rates were 50.30% and 68.95%, respectively, and were significantly higher in mares aged 3–7 years than ≥18 years old mares. The late embryonic losses (9.86%) that occurred between Days 16 and 39 post-ovulation contributed more than 50% of the overall detected pregnancy losses (19.11%). The overall percent detected pregnancy losses were lower in mares at ages 3–7 years compared to those at ages ≥18 years (14.78% vs. 46.43%, respectively; P < 0.0001). Chronic barren and habitual aborter mares tended to affect reproductive efficiency of mares. Fifty percent of the mares that experienced ≥2 consecutive abortions or barren years, again stayed aborted or barren in the next seasons, respectively. No effect of numbers of matings per oestrus was observed on overall fertility. Neither the induction of oestrus nor ovulation by exogenous hormonal treatment had any effect on most of the analyzed reproductive parameters. Regarding breeding month or years, the reproductive efficiency did not differ significantly. The incidence of multiple pregnancies was 5.40% and percent late embryonic loses were higher (P = 0.0016) in twin (21.98%) than singleton (8.64%) pregnancies. In conclusion, comparatively lower fertility rates were recorded in Thoroughbred mares bred under Indian subtropical climatic conditions than those reported from temperate regions that might be due to difference in breeding management rather than prevailing environment.  相似文献   

6.
Immunoreactive urinary oestrogen conjugates were assessed in daily urine samples (approximately 5 samples/week) collected from 8 Przewalski's mares maintained under semi-free-ranging pasture conditions. The relative percentage contributions of immunoreactive urinary oestrogens during different reproductive stages (oestrus, luteal phase, early, mid- and late gestation) were determined using high-pressure liquid chromatography. In general, conjugated forms of oestrone (oestrone sulphate and oestrone glucuronide) were the major excreted immunoreactive oestrogens in nonpregnant and pregnant Przewalski's mares. Variations in urinary oestrogen conjugates indicated that the onset of oestrous cyclicity coincided with increasing daylengths, and the non-conception oestrous cycle was 24.1 +/- 0.7 days (n = 17) in duration. Most copulations (29/35, 82.9%) were observed between Day -4 and Day +1 from the preovulatory oestrogen conjugates peak (Day 0). Based on known copulation dates, the mean gestation length was 48.6 +/- 0.4 weeks (range 47.3-50.3 weeks). During pregnancy, urinary excretion of oestrogen conjugates increased approximately 300-fold over levels in non-pregnant mares, reaching peak concentrations by Week +24 (51% of gestation). These results demonstrate that longitudinal reproductive events, including oestrous cyclicity and pregnancy, can be monitored precisely by evaluating urinary oestrogen conjugates in samples from Przewalski's mares maintained under semi-free-ranging conditions.  相似文献   

7.
Ovaries, fetuses and plasma were collected from zebra mares shot in the Etosha National Park in Namibia between 15 and 25 August 1983. Ovarian weight was affected by reproductive status and most of the non-pregnant mares were anoestrous. The number of follicles varied between individuals and only pro-oestrous/oestrous mares had follicles larger than 20 mm in diameter. The largest follicle in pregnant mares was only 9 mm in diameter. Corpora lutea and corpora albicantia were found in non-pregnant as well as pregnant mares: 4 pregnant mares had only corpora albicantia. The presence of secondary corpora lutea could not be confirmed in any of the pregnant mares. Implantation was estimated to occur at around 73 days of gestation, and most mares (84%) had conceived between November and April. Peripheral concentrations of plasma progesterone during pregnancy varied from 0.5 to 2.4 ng/ml.  相似文献   

8.
Pattern and manipulation of follicular development in Bos indicus cattle   总被引:1,自引:0,他引:1  
Bos indicus cattle are widespread in tropical regions due to their adaptation to these environments. Although data on reproductive performance have indicated both inferior and superior results for B. indicus cattle, there is little doubt that B. indicus cattle are superior than Bos taurus cattle when they are both kept in tropical or subtropical environments, where stressors like hot temperatures, humidity, ectoparasites and low quality forages are greater. Reproductive endocrinology and oestrus behaviour of the B. indicus cattle have been studied for over 30 years; however, the application of technologies such as real time ultrasonography and Heat-Watch systems has expanded our knowledge on the ovarian follicular-wave dynamics during the oestrous cycle and the time of ovulation. Ovarian follicular dynamics in B. indicus cattle is characterised by the occurrence of two, three or sometimes four waves of follicular development. While dominance is similar to that in B. taurus cattle, maximum diameters of the dominant follicle and CL are smaller than those reported in B. taurus and are probably due to a lower capacity for LH secretion than in B. taurus. Duration of oestrus is approximately 10 h and the interval from oestrus to ovulation is about 27 h. However, the variability in response to prostaglandin F2alpha (PGF) treatments and the difficulty for oestrus detection in B. indicus cattle have limited the widespread application of artificial insemination (AI) and emphasizes the need for treatments that control follicular development and ovulation. Follicular-wave development in B. indicus cattle can be controlled mechanically by ultrasound-guided follicle ablation, or hormonally by treatments with GnRH or oestradiol and progestogen/progesterone in combination. Treatments with GnRH plus PGF and a second GnRH (synchronization protocol known as Ovsynch) or oestradiol benzoate (known as GPE) have resulted in acceptable pregnancy rates after fixed-time AI (FTAI) in cycling cows, but results were lower in heifers and cows in postpartum anoestrus. Alternatively, treatments with oestradiol and progestogen/progesterone releasing devices resulted in synchronous emergence of a new follicular wave, and a second oestradiol or GnRH treatment after device removal resulted in synchronous ovulation and acceptable pregnancy rates to FTAI. Furthermore, oestradiol and progesterone treatments combined with eCG (given at the time of device removal) increased pregnancy rates in suckled B. indicus cows and may be useful for the treatment of cows in postpartum anoestrus. In summary, exogenous control of luteal and follicular development facilitates the application of assisted reproductive technologies in B. indicus cattle by offering the possibility of planning AI programs without the necessity of oestrus detection and without sacrificing the overall results.  相似文献   

9.
Oestrogen and progesterone concentrations in blood and follicular fluid and blood levels of LH were determined in 426 mares at different stages of the oestrous cycle. Mature follicles occur at all stages of the cycle; they ovulate readily in early metoestrus, occasionally in late metoestrus and very rarely in dioestrus. Maturation of a mid-cycle follicle is associated with intermediate levels of LH, which are less than those found during oestrus. This lower level of LH together with a high level of progesterone are probably responsible for the failure of ovulation and regression of most of the mid-cycle mature follicles found in the mare.  相似文献   

10.
A 16 h daily photoperiod hastened the onset of the ovulatory season (first ovulation); gonadotrophin and follicular changes prior to the onset were similar in intact light-treated and control mares. A preovulatory decline in FSH concentrations before the onset of the ovulatory season preceded the decrease in number of follicles (15--25 mm) and the rise in LH concentrations which was temporally associated with the growth of an ovulatory follicle. Seasonal changes of FSH and LH concentrations were found in ovariectomized mares and were influenced by photoperiod. During the anovulatory season, there was no ovarian influence on gonadotrophin concentrations. However, during the ovulatory season the ovaries exerted a positive influence on seasonally elevated LH concentrations during oestrus and a negative influence during dioestrus. The ovaries exerted a negative influence on seasonally elevated FSH concentrations throughout the oestrous cycle. The onset of the ovulatory season occurred at the time of the first sustained increase in LH concentrations resulting from positive seasonal (increasing photoperiod) and ovarian influences.  相似文献   

11.
The effects of chronic treatment with norgestomet on follicular dynamics, corpus luteum growth and function as well as the temporal relationships among body temperature, oestrous behaviour, the luteinizing hormone (LH) surge and ovulation following implant removal were studied in 16 Holstein heifers. Oestrous cycles of the heifers were initially synchronized using 2 injections of prostaglandin F-2 alpha (PGF-2 alpha) 12 days apart. The heifers were then implanted with a norgestomet ear implant for 9 days, beginning either at the middle of the synchronized cycle (dioestrus) or at the end of the synchronized cycle (pro-oestrus). Follicular dynamics, corpus luteum growth and regression, and plasma progesterone were not affected by norgestomet treatment at dioestrus. The dominant follicle present at the time of norgestomet implantation in the pro-oestrus group was maintained during the 9-day implant period of 6 of 8 heifers and ovulated after implant removal. Time from implant removal to onset of standing oestrus and time to LH peak following implant removal were highly correlated with the time of ovulation (r = 0.92 and 0.96, respectively). Onset of standing oestrus and the LH peak and the onset of standing oestrus and peak vaginal and rectal temperatures were also highly correlated (r = 0.96, 0.82 and 0.81, respectively). It is concluded that any decrease in pregnancy rates following treatment with norgestomet is not due to asynchrony among oestrus, the LH surge and ovulation.  相似文献   

12.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A study has been made of the morphological and histochemical changes of the ovary of the field rat, Millardia meltada during its oestrous cycle and pregnancy. The follicular growth and atresia, ovulation and formation of corpora lutea occur throughout the year except severe winter months (December and January). Fluctuations in the follicular development occur on different days of the oestrous cycle and pregnancy. The granulosa cells show a progressive increase in their size in successive stages of follicle growth. The granulosae of normal follicles show some sparsely scattered lipid bodies which consist of phospholipids. Theca interna cells during follicular growth develop diffuse lipoproteins and lipid droplets consisting of triglycerides, phospholipids and cholesterol and/or its esters. The luteal cells of corpora lutea are formed by the granulosa cells as the theca interna cells degenerate and disappear. The fibroblast-like cells of thecal origin, alongwith the blood vessels, invade the luteal cell mass. The luteal cells during metoestrus, dioestrus and first half of pregnancy show abundant diffuse lipoproteins and a few lipid droplets composed mainly of phospholipids and some triglycerides, which are indicative of active steroidogenesis. The details of degenerative histological and histochemical alterations of corpora lutea during oestrous cycle and pregnancy are also described and discussed. Morphological and histochemical changes of follicular atresia are described. The granulosa cells of atretic follicle degenerate and disappear leaving behind theca interna cells which form patches of interstitial gland cells during the reproductive activity of the present rat. Interstitial gland cells show diffusely distributed sudanophilic lipoproteins and lipid droplets consisting of triglycerides, cholesterol and/or its esters and some phospholipids, which are indicative of steroidogenesis. The functional significance of histological and histochemical changes, which occur in various components of the ovary during oestrous cycle and pregnancy, has been discussed.  相似文献   

14.
Two experiments were performed to determine changes in the abundance of oestrogen and progesterone receptor (ER alpha and PR) mRNAs in equine endometrium during the oestrous cycle and early pregnancy, and under the influence of exogenous steroids. In Expt 1, endometrial biopsies were obtained from non-mated mares during oestrus and at days 5, 10 and 15 after ovulation, and from pregnant mares at days 10, 15 and 20 after ovulation. There were overall effects of day on the abundance of ER alpha (P = 0.0001) and PR (P = 0.0014) mRNAs. The amount of ER alpha mRNA decreased at day 10 of pregnancy, and PR mRNA was reduced at day 5 in non-mated mares and at day 15 of pregnancy, compared with oestrous values. Experiment 2 was conducted to determine the effects of exogenous steroids on endometrial ER alpha and PR mRNAs. Endometrial biopsies were obtained from 19 anoestrous mares that had been treated with vehicle, oestradiol, progesterone, or oestradiol followed by progesterone for either a short or a long duration. The steroid treatment affected the abundance of ER alpha mRNA (P = 0.0420), which was higher (P < 0.05) in the oestradiol group than in the group treated with oestradiol followed by long duration progesterone. The steroid treatment did not affect the abundance of PR mRNA. These results demonstrate that the amount of steroid receptor mRNA changes with the fluctuating steroid environment in the uterine endometrium of cyclic and early pregnant mares, and that the duration of progesterone dominance may affect ER alpha gene expression. In addition, factors other than steroids may regulate ER alpha and PR gene expression in equine uterine endometrium.  相似文献   

15.
This study was undertaken to determine if fertility could be improved by increasing the interval from foaling to breeding. Forty-two mares, not bred during normal post-partum oestrus, were injected with a prostaglandin analogue on Day 6 or 7 following ovulation. Mares were mated artifically with antibiotic-treated semen during the resulting oestrus and, if necessary, for the following 4 cycles. Their fertility was compared, by cycles/pregnancy and rate of fetal loss, to mares bred by the same methods on 86 normal post-partum oestrous periods. The interval from foaling to the onset of breeding and the duration of oestrus were longer in the injected mares than the intervals observed in the untreated mares. Both groups averaged 1.3 breeding periods/pregnancy. The rate of fetal loss was not significantly different between the groups. Increasing the interval from foaling to breeding did not improve fertility.  相似文献   

16.
Oestrous behaviour, ovarian follicular development, ovulation and changes in hair coat were observed in Pony mares which were unoperated, sham-ganglionectomized control or bilaterally superior cervical ganglionectomized. Surgery was performed during the winter anoestrus (1975--1976). Reproductive patterns in all groups were similar during the first breeding season (1976) after operation but in ganglionectomized mares the onset of the next breeding season (date of first ovulation in 1977), the pattern of follicular development, date of first oestrus and pattern of hair coat changes were all significantly delayed relative to those of the non-operated and sham-operated mares in 1976 and 1977 and relative to their own patterns in 1976. These results indicate that the pineal-hypothalamo-pituitary axis may regulate or moderate annual reproductive rhythms in mares.  相似文献   

17.
The objective of the present study was to determine whether parathyroid hormone-related peptide (PTHrP) is present in the equine follicular fluid and if so, how it is related to the follicular development in the horse. For this purpose, ovaries were collected from 40 Thoroughbred and Thoroughbred Cross mares at slaughter during the period from February to May. Normal growing follicles were dissected from the ovaries of each mare and their diameters measured. A total of 174 follicles was used in this study. The follicular fluid was aspirated from each follicle and assayed for PTHrP, oestradiol (E), testosterone (T) and progesterone (P). The follicles were classified as either oestrogenic or non-oestrogenic if the follicular fluid content of oestradiol was >40 or <40 ng/ml, respectively. PTHrP concentrations were significantly (P<0.05) higher in oestrogenic follicles, but T and P concentrations did not differ. Furthermore, E:T ratio was significantly (P<0.05) greater in oestrogenic follicles compared to the non-oestrogenic ones. The mean diameter of oestrogenic follicles was significantly (P<0.05) greater than that of non-oestrogenic ones. The higher concentrations of PTHrP observed in the follicular fluid of healthy oestrogenic follicles suggest that it may have a role in the control of ovarian function.  相似文献   

18.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

19.
《Theriogenology》2009,71(9):1489-1497
The Catalonian donkey breed is in danger of extinction, and much needs to be learned about the reproductive features of its females if breeding and conservation programmes are to be successful. This study reports the oestrous behaviour, oestrus cycle characteristics and dynamic ovarian events witnessed during 50 oestrous cycles (involving 106 ovulations) in 10 Catalonian jennies between March 2002 and January 2005. These jennies were teased, palpated transrectally and examined by ultrasound using a 5 MHz linear transducer—daily during oestrus and every other day during dioestrus. Predictors of ovulation were sought among the variables recorded.The most evident signs of oestrus were mouth clapping (the frequent vertical opening and closing of the mouth with ears depressed against the extended neck) and occasional urinating and winking of the vulval lips (homotypical behaviour). Interactions between jennies in oestrus were also recorded, including mounting, herding/chasing, the Flehmen response, and vocalization (heterotypical behaviour).Nine jennies ovulated regularly throughout the year; one had two anovulatory periods (54 and 35 days). The length of the oestrus cycle was 24.90 ± 0.26 days, with oestrus itself lasting 5.64 ± 0.20 days (mean ± S.E.M.) and dioestrus 19.83 ± 0.36 days. The incidence of single, double and triple ovulations was 55.66% (n = 59), 42.45% (n = 45) and 1.89% (n = 2), respectively. No significant difference was seen in the number of ovulations involving the left and right ovaries (52.63% [n = 70] compared to 47.37% [n = 63] respectively; P > 0.05). The mean interval between double ovulation was 1.44 ± 3.98 days. The mean diameter of the preovulatory follicle at day −1 was 44.9 ± 0.5 mm; the mean growth rate over the 5 days before ovulation was 3.7 mm/day.Data on preovulatory changes in oestrous behaviour, follicle size, follicle texture, the echographic appearance of the follicle and uterus, and uterine tone were subjected to stepwise logistic regression analysis to detect predictors of ovulation. The logit function showed the best predictors to be follicle size, follicular texture and oestrous behaviour. Certain combinations of these three variables allow the prediction of ovulation within 24 h with a probability of >75%.  相似文献   

20.
The oestrous cycles of 20 mixed-breed mares were synchronized with daily injections of 10 mg oestradiol-17 beta and 150 mg progesterone given i.m. for 10 days. On the 10th day, 10-15 mg prostaglandin F-2 alpha was administered i.m. to induce oestrus. Neutrophils were isolated from jugular blood on the 2nd or 3rd day of oestrus, Days 5 and 7 after ovulation or during early pregnancy (Days 18-34 of pregnancy). Neutrophils were challenged with Staphylococcus aureus and their bactericidal activity examined after 30 and 120 min of incubation for a reduction of colony forming units. Bactericidal activity increased with the time of incubation (P less than 0.01) but did not differ for the oestrous cycle or pregnancy (P greater than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号