首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.  相似文献   

2.
3.
Extragenic temperature-resistant suppressor mutants of an rpoD800 derivative of Escherichia coli W3110 were selected at 43.5 degrees C. Two of the mutants were shown to have a phenotype of enhanced accumulation of heterologous proteins. Genetic mapping of the two mutants showed that the mutation conferring temperature resistance resided in the rpoH gene. P1-mediated transduction of the rpoD+ gene into both of the rpoD800 rpoH double mutants resulted in viable rpoH mutants, MON102 and MON105, that retained temperature resistance at 46 degrees C, the maximum growth temperature of W3110. The complete rpoH gene, including the regulatory region, from MON102, MON105, and the parental W3110 was cloned and sequenced. Sequencing results showed that a single C----T transition at nucleotide 802 was present in both MON102 and MON105, resulting in an Arg(CGC)----Cys(TGC) substitution at amino acid residue 268 (R-268-C; this gene was designated rpoH358). Heterologous protein accumulation levels in both MON102 and MON105, as well as in rpoH358 mutants constructed in previously unmanipulated W3110 and JM101, were assessed and compared with parental W3110 and JM101 levels. Expression studies utilizing the recA or araBAD promoter and the phage T7 gene 10L ribosome-binding site (g10L) showed that increased accumulation levels of a number of representative heterologous proteins (i.e., human or bovine insulin-like growth factor-1, bovine insulin-like growth factor-2, prohormone of human atrial natriuretic factor, bovine placental lactogen, and/or bovine prolactin) were obtained in the rpoH358 mutants compared with the levels in the parental W3110 and JM101. The mechanism of enhanced heterologous protein accumulation in MON102 and MON105 was unique compared with those of previously described rpoH mutants. Pulse-chase and Northern (RNA) blot analyses showed that the enhanced accumulation of heterologous proteins was not due to decreased proteolysis but was instead due to increased levels of the respective heterologous mRNAs accompanied by increased synthesis of the respective heterologous proteins. The plasmid copy number remained unaltered.  相似文献   

4.
Extragenic temperature-resistant suppressor mutants of an rpoD800 derivative of Escherichia coli W3110 were selected at 43.5 degrees C. Two of the mutants were shown to have a phenotype of enhanced accumulation of heterologous proteins. Genetic mapping of the two mutants showed that the mutation conferring temperature resistance resided in the rpoH gene. P1-mediated transduction of the rpoD+ gene into both of the rpoD800 rpoH double mutants resulted in viable rpoH mutants, MON102 and MON105, that retained temperature resistance at 46 degrees C, the maximum growth temperature of W3110. The complete rpoH gene, including the regulatory region, from MON102, MON105, and the parental W3110 was cloned and sequenced. Sequencing results showed that a single C----T transition at nucleotide 802 was present in both MON102 and MON105, resulting in an Arg(CGC)----Cys(TGC) substitution at amino acid residue 268 (R-268-C; this gene was designated rpoH358). Heterologous protein accumulation levels in both MON102 and MON105, as well as in rpoH358 mutants constructed in previously unmanipulated W3110 and JM101, were assessed and compared with parental W3110 and JM101 levels. Expression studies utilizing the recA or araBAD promoter and the phage T7 gene 10L ribosome-binding site (g10L) showed that increased accumulation levels of a number of representative heterologous proteins (i.e., human or bovine insulin-like growth factor-1, bovine insulin-like growth factor-2, prohormone of human atrial natriuretic factor, bovine placental lactogen, and/or bovine prolactin) were obtained in the rpoH358 mutants compared with the levels in the parental W3110 and JM101. The mechanism of enhanced heterologous protein accumulation in MON102 and MON105 was unique compared with those of previously described rpoH mutants. Pulse-chase and Northern (RNA) blot analyses showed that the enhanced accumulation of heterologous proteins was not due to decreased proteolysis but was instead due to increased levels of the respective heterologous mRNAs accompanied by increased synthesis of the respective heterologous proteins. The plasmid copy number remained unaltered.  相似文献   

5.
摘要:【目的】通过分子生物学手段构建重组质粒,将其转入野生型大肠杆菌W3110,分析含苏氨酸操纵子基因的质粒及质粒定点突变解除反馈抑制时,对L-苏氨酸积累的影响。【方法】以W3110染色体DNA为模板,PCR扩增苏氨酸操纵子基因,即启动子THrLp、编码前导肽基因thrL以及thrA、thrB、thrC基因,通过重叠延伸PCR的方法对thrA基因定点突变,解除苏氨酸对它的反馈抑制,构建出重组表达质粒WYE112和WYE134,5 L发酵实验测定L-苏氨酸的产量。【结果】经5 L发酵罐发酵产酸实验,W3110的L-苏氨酸产量为0.036 ± 0.004 g/L,携带含苏氨酸操纵子质粒的W3110菌株L-苏氨酸产量为2.590 ± 0.115 g/L,质粒上thrA解除反馈抑制后,L-苏氨酸的产量增加到9.223 ± 1.279 g/L。【结论】过表达苏氨酸操纵子基因可以使L-苏氨酸积累,进一步解除thrA基因的反馈抑制,可以增强L-苏氨酸积累的效果,为L-苏氨酸工程菌改造的进一步研究奠定了基础。  相似文献   

6.
To find alternative genetic resources for D-serine dehydratase (E.C. 4.3.1.18, dsdA) mediating the deamination of D-serine into pyruvate, metagenomic libraries were screened. The chromosomal dsdA gene of a wild-type Escherichia coli W3110 strain was disrupted by inserting the tetracycline resistance gene (tet), using double-crossover, for use as a screening host. The W3110 dsdA::tet strain was not able to grow in a medium containing D-serine as a sole carbon source, whereas wild-type W3110 and the complement W3110 dsdA::tet strain containing a dsdA-expression plasmid were able to grow. After introducing metagenome libraries into the screening host, a strain containing a 40-kb DNA fragment obtained from the metagenomic souce derived from a compost was selected based on its capability to grow on the agar plate containing D-serine as a sole carbon source. For identification of the genetic resource responsible for the D-serine degrading capability, transposon- micron was randomly inserted into the 40-kb metagenome. Two strains that had lost their D-serine degrading ability were negatively selected, and the two 6-kb contigs responsible for the D-serine degrading capability were sequenced and deposited (GenBank code: HQ829474.1 and HQ829475.1). Therefore, new alternative genetic resources for D-serine dehydratase was found from the metagenomic resource, and the corresponding ORFs are discussed.  相似文献   

7.
The Pseudomonas oleovorans alkB gene is expressed in alk+ Escherichia coli W3110 to 10 to 15% of the total cell protein, which is exceptional for a (foreign) cytoplasmic membrane protein. In other E. coli recombinants such as alk+ HB101, AlkB constitutes 2 to 3% of the total protein. In this study, we have investigated which factors determine the expression level of alkB in alk+ W3110. In particular, we have investigated the role of AlkB-induced stimulation of phospholipid synthesis. Blocking phospholipid synthesis in alk+ W3110 did not specifically alter the expression of alkB, and we conclude that stimulation of phospholipid synthesis is not a prerequisite for high-level expression of the membrane protein. W3110 is able to produce exceptionally high levels of alkane monooxygenase, because the rate of alkB mRNA synthesis in W3110 is an order of magnitude higher than that in HB101. This may be due in part to the higher copy number of pGEc47 in W3110 in comparison with HB101.  相似文献   

8.
Uptake studies with [14C]picolinate and 55Fe3+ have provided an explanation for the change in streptonigrin killing on adaptation of Escherichia coli to picolinate, in terms of the available iron within the cell. When picolinic acid is added to a growing culture of E. coli an interval of bacteriostasis ensues; this adaptation period is followed by resumption of exponential growth. Addition of picolinate (4 mM) to a log phase culture of strain W3110 gave protection from the lethal action of streptonigrin (30 microM) when the two agents were added simultaneously. In contrast streptonigrin killed cells that had adapted to picolinate; however, a preincubation of adapted W3110 with phenethyl alcohol protected the cells from streptonigrin lethality. [14C]Picolinate uptake studies showed that initially picolinate entered the cells, but that it was excluded from adapted cells; addition of phenethyl alcohol permitted the entry of picolinate into adapted W3110. The changes in streptonigrin killing parallel the changes in concentration of intracellular picolinate, which can chelate the iron required by streptonigrin for its bactericidal action. 55Fe3+ uptake studies showed that initially picolinate prevented iron accumulation by strain W3110, whereas adapted cells did take up iron in the presence of picolinate. Addition of phenethyl alcohol prevented any observed uptake of iron by adapted W3110. This modulation of iron transport by picolinate also affects streptonigrin lethality. Experiments with iron transport mutants showed that picolinate acted on both the enterochelin and citrate routes of uptake. Therefore picolinate affects the concentration of available iron within the cell both by (a) its intracellular presence resulting in chelation of iron and (b) its action on iron uptake; these effects explain the change in streptonigrin killing on adaptation of E. coli to picolinate.  相似文献   

9.
Xia XX  Han MJ  Lee SY  Yoo JS 《Proteomics》2008,8(10):2089-2103
Escherichia coli BL21 (DE3) and W3110 strains, belonging to the family B and K-12, respectively, have been most widely employed for recombinant protein production. During the excretory production of recombinant proteins by high cell density cultivation (HCDC) of these strains, other native E. coli proteins were also released. Thus, we analyzed the extracellular proteomes of E. coli BL21 (DE3) and W3110 during HCDC. E. coli BL21 (DE3) released more than twice the amount of protein compared with W3110 during HCDC. A total of 204 protein spots including 83 nonredundant proteins were unambiguously identified by 2-DE and MS. Of these, 32 proteins were conserved in the two strains, while 20 and 33 strain-specific proteins were identified for E. coli BL21 (DE3) and W3110, respectively. More than 70% of identified proteins were found to be of periplasmic origin. The outer membrane proteins, OmpA and OmpF, were most abundant. Two strains showed much different patterns in their released proteins. Also, cell density-dependent variations in the released proteins were observed in both strains. These findings summarized as reference proteome maps will be useful for studying protein release in further detail, and provide new strategies for enhanced excretory production of recombinant proteins.  相似文献   

10.
Escherichia coli strains VH33 (PTS? GalP? strain displaying a strongly reduced overflow metabolism) and VH34 (additionally lacking the pyruvate kinase A) were evaluated for the production of a plasmid DNA (pDNA) vaccine. The parent (W3110) and mutant strains were cultured using 10 g of glucose/L. While the specific growth rates of the three strains were similar, they presented differences in the accumulation of acetate. W3110 accumulated up to 4 g/L of acetate, VH33 produced 1.4 g/L, and VH34 only 0.78 g/L. VH33 and VH34 produced 76% and 300% more pDNA than W3110. Moreover, VH34 demanded 33% less oxygen than VH33 and W3110, which can be advantageous for large-scale applications.  相似文献   

11.
Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, sigma38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of sigma38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a sigma38 preparation from WC196 showed that the 33th residue of sigma38 is a serine residue. The deltarpoS deltacadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of sigma38, expressed a significant amount of Ldc and accumulated a large amount of sigma38. However, the deltarpoS deltacadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither sigma38 nor Ldc significantly.  相似文献   

12.
DNA sequence and expressional analyses of the gcd gene of Escherichia coli K-12 W3110 revealed that two promoters that were detected were regulated negatively by cyclic AMP and positively by oxygen. Sequence conservation of the gcd gene between E. coli K-12 W3110 and PPA42 suggests that glucose dehydrogenase is required for the E. coli cells, even though it ordinarily exists as an apoprotein.  相似文献   

13.
The chromosome of an Escherichia coli K-12 strain W3110 contains seven copies of insertion element IS1, 12 copies of IS2 and six copies of IS3. We determined the approximate locations of six copies of IS1 (named is1A to is1F), ten copies of IS2 (named is2A to is2J), and five copies of IS3 (named is3A to is3E) on the W3110 chromosome by plaque hybridization using the "mini-set" of the lambda phage library that includes 476 clones carrying chromosomal segments that cover the W3110 chromosome almost entirely. Cleavage maps of the W3110 chromosome and cleavage analysis of phage DNAs carrying insertion elements allowed us to assign more precise locations to most of the insertion elements and to determine their orientations. Insertion elements were distributed randomly along the W3110 chromosome in one or other orientation. Several of these were located at the same positions on the chromosome of another E. coli K-12 strain, JE5519, and they were assumed to be the original complement of insertion elements in E. coli K-12 wild-type. Locations and orientations of such insertion elements were correlated well with Hfr points of origin and with crossover points for excision of some F' factors derived from several Hfrs. Insertion elements may be involved also in rearrangement of bacterial chromosomes.  相似文献   

14.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

15.
We identified phage clones containing insertion element IS5 in a set of 476 lambda phage clones carrying chromosomal segments that cover almost the entire chromosome of Escherichia coli K-12 W3110. Precise locations and orientations of IS5 were then determined by cleavage analysis of phage DNAs containing them. We mapped 23 copies of IS5 (named is5A to is5W) on the W3110 chromosome. Among them, ten were identified as the common elements present at the same locations in both chromosomes of W3110 and another E. coli K-12 strain, JE5519. While most of the mapped IS5 elements were scattered over the W3110 chromosome, four copies of IS5 (designated is5L, is5M, is5N and is5O) were in a region representing tandem duplication of a DNA segment flanked by two copies of IS5. Interestingly, one unit of this DNA segment as well as a portion of it was seen also in a tandem array in a different region where two copies of IS5 (designated is5P and is5Q) were present. In particular two pairs of the mapped IS5 elements may have been involved in inversion of the chromosomal segments in two of the E. coli K-12 derivatives.  相似文献   

16.
【目的】比较分析苏氨酸吸收系统TdcC、SstT和LIV-1缺失对大肠杆菌吸收和积累胞外苏氨酸的影响。【方法】从菌株E.coli W3110出发,敲除tdcC、sst T和liv J基因,构建Tdc C、SstT和LIV-1系统单缺失和多缺失菌株,将过量表达苏氨酸操纵子基因的重组质粒pKKthr AC1034TBC分别转入原始菌和重组菌,考察各菌株吸收和积累胞外苏氨酸的能力。【结果】敲除tdc C和sst T基因的重组菌T04的苏氨酸吸收能力比原始菌W3110降低了43.28%,T04(pKKthr AC1034TBC)胞外苏氨酸积累量最高达到1.09 g/L,比对照菌W3110(pKKthr AC1034TBC)高出172.5%。敲除tdcC、sstT和livJ基因的重组菌T07的苏氨酸吸收能力比T04降低了12.97%,然而T07(pKKthr AC1034TBC)胞外苏氨酸积累量最大为0.63 g/L,与T04(pKKthr AC1034TBC)相比降低了42.2%。【结论】阻断Tdc C和Sst T系统,能有效降低大肠杆菌吸收苏氨酸的能力,提高苏氨酸的胞外积累量。阻断LIV-1系统,虽然能减少大肠杆菌对苏氨酸的吸收,却不利于菌株积累胞外苏氨酸。  相似文献   

17.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

18.
Site-directed mutagenesis has previously been used to construct Escherichia coli dnaK mutants encoding proteins that are altered at the site of in vitro phosphorylation (J. S. McCarty and G. C. Walker, Proc. Natl. Acad. Sci. USA 88:9513-9517, 1991). These mutants are unable to autophosphorylate and are severely defective in ATP hydrolysis. These mutant dnaK genes were placed under the control of the lac promoter and were found not to complement the deficiencies of a delta dnaK mutant in negative regulation of the heat shock response. A decrease in the expression of DnaK and DnaJ below their normal levels at 30 degrees C was found to result in increased expression of GroEL. The implications of these results for DnaK's role in the negative regulation of the heat shock response are discussed. Evidence is also presented indicating the existence of a 70-kDa protein present in a delta dnaK52 mutant that cross-reacts with antibodies raised against DnaK. Derivatives of the dnaK+ E. coli strain MC4100 expressing the mutant DnaK proteins filamented severely at temperatures equal to or greater than 34 degrees C. In the dnaK+ E. coli strain W3110, expression of these mutant proteins caused extreme filamentation even at 30 degrees C. Together with other observations, these results suggest that DnaK may play a direct role in the septation pathway, perhaps via an interaction with FtsZ. Although delta dnaK52 derivatives of strain MC4100 filament extensively, a level of underexpression of DnaK and DnaJ that results in increased expression of the other heat shock proteins did not result in filamentation. The delta dnaK52 allele could be transduced successfully, at temperatures of up to 45 degrees C, into strains carrying a plasmid expressing dnaK+ dnaJ+, although the yield of transductants decreased above 37 degrees C. In contrast, with a strain that did not carry a plasmid expressing dnaK+ dnaJ+, the yield of delta dnaK52 transductants decreased extremely sharply between 39 and 40 degrees C, suggesting that DnaK and DnaJ play one or more roles critical for growth at temperatures of 40 degrees C or greater.  相似文献   

19.
M. McKane  R. Milkman 《Genetics》1995,139(1):35-43
Chromosomal DNA from several Escherichia coli reference (ECOR) strains was transduced by bacteriophage P1 into E. coli strain K12 W3110 trpA33. Recombination patterns of the transductants were determined by restriction fragment length polymorphism over a 40-kb region centering on a single marker (trpA(+)) in the tryptophan operon. These experiments demonstrate that transduction between different strains of E. coli can result in recombinational replacements that are small in comparison to the entrant molecule (replacements average 8-14 kb, whereas P1 packages ~ 100 kb) often in a series of discrete segments. The transduction patterns generated resemble the natureal mosaic sequence patterns of the ECOR strains described in previous work. Extensive polymorphisms in the restriction-modification systems of the ECOR strains are a possible explanation for the sequence patterns in nature. To test this possibility, two transductants were back-transduced into strain K12 W3110 trpA33. The resulting patterns were strikingly different from the original transductions. The size of the replacements was greater, and no multiple replacements were observed, suggesting a role for restriction-modification systems in the transduction patterns and perhaps for the mosaic sequence patterns in nature.  相似文献   

20.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号