首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The technique of resonance Raman spectroscopy has been used to investigate the interaction of the antibiotic rifampicin with Escherichia coli RNA polymerase. Spectra were analyzed by generating the first derivative of each recorded spectrum using the Savitsky-Golay algorithm. The only band that shifted significantly in the resonance Raman spectrum of rifampicin upon the formation of the drug-core polymerase complex was the amide III band. It underwent an 8 cm?1 shift from 1306 cm?1 in aqueous solution to 1314 cm?1. A comparable shift was observed for the rifampicin-holoenzyme complex. Thus, the interaction of the sigma subunit with the core polymerase does not significantly alter the manner in which rifampicin interacts with RNA polymerase. The nature of this shift has been analyzed further by recording the resonance Raman spectrum of rifampicin in a variety of solvents with different hydrogen-bonding ability. In non-hydrogen-bonding solvents (benzene and carbon disulfide) the amide III band was observed at approximately 1220 cm?1; in dimethyl sulfoxide, a weak hydrogen-bond acceptor, 1274 cm?1; in water, a strong hydrogen-bonding solvent, 1306 cm?1; and finally, in triethylamine, a stronger hydrogen-bonding solvent than water, it was observed at 1314 cm?1. Thus, as the hydrogen-bonding ability of the solvent increased, the amide III band shifted to higher frequency. Based on these results, the rifampicin binding site in RNA polymerase provides a stronger hydrogen-bonding environment for the amidic proton of rifampicin than is encountered when rifampicin is free in aqueous solution.  相似文献   

2.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

3.
The formation of closed icosahedral capsids from a single species of coat protein subunit requires that the subunits assume different conformations at different lattice positions. In the double-stranded DNA bacteriophage P22, formation of correctly dimensioned capsids is mediated by interaction between coat protein subunits and scaffolding protein. Raman spectroscopy has been employed to compare the conformations of coat protein subunits which have been polymerized to form capsids in the presence and absence of the of scaffolding protein display a Raman spectrum characterized by a broad amide I band centered at 1665 cm-1 with a discernible shoulder near 1653 cm-1, and a broad amide III profile centered at 1238 cm-1 but asymmetrically skewed to higher frequency. These spectral features indicate that the protein conformation in procapsid shells is rich in beta-sheet secondary structure but contains also a significant distribution of alpha-helix. When biologically active, purified subunits assemble in the absence of scaffolding protein, they form polydisperse multimers lacking the proper dimensions of procapsid closed shells. We designate these multimers as "associated subunits" (AS). The Raman spectrum of associated subunits indicates a narrower distribution of secondary structure. The associated subunits are characterized by a sharper and more intense Raman amide I band at 1666 cm-1, with no prominent amide I shoulder of lower frequency. An analogous narrowing of the Raman amide III profile is also observed for AS particles, with an accompanying shift of the amide III band center to 1235 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation.  相似文献   

5.
R P Rava  T G Spiro 《Biochemistry》1985,24(8):1861-1865
Ultraviolet resonance Raman (RR) spectra, with 200- and 218-nm excitation from a H2-shifted quadrupled Nd:YAG laser, are reported for insulin and alpha-lactalbumin in dilute aqueous solution, at pH values known to produce differences in the exposure of the aromatic residues to solvent. At 200 nm, the spectra are dominated by tyrosine bands, whose intensity is lowered somewhat in protein conformations in which tyrosine is exposed to solvent. The expected shift in the relative intensities of the components of the approximately 850-cm-1 tyrosine doublet is difficult to discern because the higher energy component shows much greater resonance enhancement and the lower energy component appears as a weak shoulder. The peptide vibrations, amides I, II, and III, are also enhanced at 200 nm. The infrared active amide II mode is particularly prominent, although it is not observed in Raman spectra with visible excitation. In addition, the amide I band is quite broad in the 200-nm RR spectra, and the peak frequency is lower than that seen in visible excitation Raman spectra and is close to the infrared frequency. It appears that 200-nm excitation produces resonance enhancement of the infrared-active components of both amide I and amide II. Excitation at 218 nm enhances tryptophan modes strongly. The 876-cm-1 band, assigned to a deformation mode of the five-membered ring, shows a measurable upshift upon exposure of tryptophan to solvent, attributable to N-H hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
J L Weaver  R W Williams 《Biopolymers》1990,30(5-6):593-597
Raman spectra of series of aqueous solutions of peptides containing two amino acids, glycine-X, alanine-X, and serine-X, where X is an uncharged amino acid, show that the amide III band shifts systematically to lower frequencies as the side chain of the X amino acid becomes larger. The range of this shift is about 20 cm-1, starting at 1275 cm-1 for alanine-glycine and moving to 1251 cm-1 for alanine-tryptophan, with a correlation coefficient of 0.93 with the mass of the X amino acid side chain for 10 peptides. The amide I frequencies remain constant as the X amino acid is changed. This shift may result from a change in the average conformational preference of the peptide, a change in vibrational coupling of the amide III modes with the X amino acid side chain, a change in molecular force constants, or a combination of these. These results present a test for computational methods.  相似文献   

7.
ETF Dehydrogenase is an iron sulfur flavoprotein responsible for the transfer of electrons between electron transfer flavoprotein (ETF) and CoQ of the electron transport chain. We have determined the resonance Raman spectrum of this enzyme observing in the process at least seven of thirteen flavin bands in the 1100cm-1-1600 cm-1 region of the Raman spectrum. The positions of three of these bands, II, IX, and X (see Figure I and Table I for band numbering system) in ETF dehydrogenase is very similar to their positions in aqueous solution of flavins in which water is hydrogen bonded to N-1, N-5, C=0(2), C=0(4), and N-H(3) of flavin. Conversely the positions of the flavin Raman bands are considerably shifted from those of flavin in nonhydrogen bonding solvent. The positions of bands II, IX, and X are nearly identical to those in the flavoprotein glutathione reductase; x-ray structural investigations on this enzyme indicate that there is extensive hydrogen bonding between FAD and protein in this molecule. A previous study in our laboratory has demonstrated that metal complexation at N-5 and C=0(4) with either Ru or Ag produces large shifts in the positions of Raman bands II, VI, IX, and X. None of these shifts are observed in ETF dehydrogenase indicating that there is no direct inner sphere coordination of Fe to flavin. In addition to the Raman bands of flavin observed in our spectrum, we also observe one band that is in the Fe-S stretching region observed for a variety of Fe-S proteins. This band is located at 331 cm-1. The frequency of the band corresponds to the 335 cm-1 band associated with the strongest Fe-S stretching mode in the 4Fe-4S protein ferrodoxin from C. pasterianum. The observed frequency is quite different from that of the 3Fe-3S proteins such as ferrodoxin(II) from D. gigas. Finally, ETF dehydrogenase shows no loss of activity or visual evidence of photodegradation in the laser beam as most other FeS proteins do.  相似文献   

8.
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.  相似文献   

9.
A resonance Raman band involving significantly the iron(III)-histidine stretching (upsilonFe-His) character is identified for metmyoglobin (metMb) through isotope sensitivity of its low-frequency resonance Raman bands, but the identification was not successful for methemoglobin (metHb) and its isolated alpha and beta subunits. A band at 218 cm-1 of natural abundance metMb exhibited a low-frequency shift for 15N-His-labeled metMb (-1.4 cm-1 shift), while the strong porphyrin bands at 248 and 271 cm-1 did not shift significantly. The frequency of the 218-cm-1 band of metMb decreased by 1.6 cm-1 in D2O, probably due to Ndelta-deuteration of the proximal His, in a similar manner to that of the upsilonFe-His band of deoxyMb in D2O. This 218-cm-1 band shifted slightly to a lower frequency in H2(18)O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm-1), presumably because of the six-coordinate structure. The lack of the 54Fe-isotope shift shows that the 218-cm-1 band is specific to metMb and not due to the deoxy species. The intensity of this band decreased for hydroxymetMb and was indiscernible for cyanometMb. For metHb and its alpha and beta subunits, however, the frequencies of the band around 220 cm-1 were not D2O sensitive. These results suggest an assignment of the band around 220 cm-1 to a pyrrole tilting mode, which significantly contains the Fe-His stretching character for metMb but scarcely for metHb and its subunits. The differences in the isotope sensitivity of this band in different proteins are considered to reflect the heme distortion from the planarity and the Fe-His geometry specific to individual proteins.  相似文献   

10.
Raman spectra, in the frequency region of the protein vibrations, of intact single muscle fibers of the giant barnacle are presented. Strong bands at 1521 and 1156 cm-1 in the spectra are attributed to resonance-enhanced Raman bands of membrane-bound beta-carotene. Many bands of the myofibrillar proteins are also observed, and at least three spectral features confirm that these proteins adopt a predominantly alpha-helical structure: (1) the amide I band at 1648 cm-1, (2) the weak scattering in the amide III region, and (3) a strong skeletal C-C stretching band at 939 cm-1. Deuterated fibers have also been examined in order to find the exact shape of the amide III band. The presence in the fibers of paramyosin, which is only found in catch muscles, is also apparent from the spectra.  相似文献   

11.
The vibrational Raman spectra of the basic pancreatic trypsin inhibitor in aqueous solution, as lyophilized powder and in a single crystal and presented. The thermal stability of this protein is demonstrated by the fact that minor alterations in the spectrum, mainly in the amide III band near 1260 cm-1, occur in the solution spectrum only at temperatures above 75 degrees C. No significant spectral changes appear when the pH value of the solution is varied in the range from 1.5 to 8.7. The distinct differences of the powder spectrum compared to that of the solution, show that lyophilization causes appreciable conformational changes both in the main-chain and in the side-chains. A difference in main chain conformation of the basic pancreatic trypsin inhibitor in single crystal and in solution is suggested by different amide III frequencies.  相似文献   

12.
Time-resolved resonance Raman spectra of the hRL intermediate of halorhodopsin have been obtained. The structurally sensitive fingerprint region of the hRL spectrum is very similar to that of bacteriorhodopsin's L550 intermediate, which is known to have a 13-cis configuration. This indicates that hRL contains a 13-cis chromophore and that an all-trans----13-cis isomerization occurs in the halorhodopsin photocycle. hRL exhibits a Schiff base stretching mode at 1644 cm-1, which shifts to 1620 cm-1 in D2O. This demonstrates that the Schiff base linkage to the protein is protonated. The insensitivity of the C-C stretching mode frequencies to N-deuteriation suggests that the Schiff base configuration is anti. The 24 cm-1 shift of the Schiff base mode in D2O indicates that the Schiff base proton in hRL has a stronger hydrogen-bonding interaction with the protein than does hR578.  相似文献   

13.
J L Koenig  B Frushour 《Biopolymers》1972,11(9):1871-1892
The conformational transitions in water and in the solid state of poly-L -glutamic acid (PGA) and poly-L -ornithine (PO) have been studied by Raman spectroscopy. The Raman spectra of PGA, PO, and the monomer, dimer, and trimer of PGA in aqueous solutions and solid state are presented. The Raman spectral changes of PGA and PO were followed through the helix-to-coil transition induced by pH, temperature, and solvent composition. A hyperchromic shift in the intensity of the amide III line accompanying the helix-to-coil transition was observed. This hyperchromic intensity shift occurs abruptly as a function of pH but more slowly with heat denaturation of the alpha helix indicating that the Raman spectrum is sensitive to the transition mechanism. The high-temperature coil and the charged coil may have different conformations as evidenced by different amide III frequencies but similar intensities in these two conformations.  相似文献   

14.
The FeIV=O stretching vibration has never been identified for a cysteine-coordinated heme enzyme. In this study, resonance Raman and visible absorption spectra were observed simultaneously for transient species in the catalytic reaction of chloroperoxidase with hydrogen peroxide by using our original apparatus for mixed-flow and Raman/absorption simultaneous measurements. For the first intermediate, the FeIV=O stretching Raman band was observed at 790 cm-1, which shifted to 756 cm-1 with the 18O derivative, but the v4 band was too weak to be identified. This suggested the formation of an oxoferryl porphyrin pi cation radical. The second intermediate gave an intense v4 band at 1,372 cm-1 but no oxygen isotope-sensitive Raman band, suggesting oxygen exchange with bulk water.  相似文献   

15.
Nickel(II)-reconstituted hemoglobin (NiHb) and myoglobin (NiMb) and model Ni porphyrins have been investigated by Soret-resonance Raman difference spectroscopy. Two sets of frequencies for the oxidation-state and core-size marker lines in the region from 1300 to 1700 cm-1 indicate two distinct sites in NiHb. Only one of these sites is evident in the Raman spectra of NiMb. This result is consistent with the UV-visible absorption spectrum of NiHb, which shows two Soret bands at 397 and 420 nm and one Soret at 424 nm for NiMb. Excitation at the blue Soret component of NiHb with 406.7-nm laser radiation preferentially enhances the set of Raman marker lines typical of Ni-protoporphyrin IX [Ni(ProtoP )] in noncoordinating solvents. The wavelength of the blue Soret component and the Raman spectrum indicate four-coordination for this site in NiHb. Laser excitation in the red Soret band enhances a set of lines whose frequencies are compatible with neither four- nor six-coordinate frequencies but are intermediate between the two. The red Soret band of the proteins is also considerably less red shifted than six-coordinate Ni-porphyrin models. These results suggest that Ni in the second site possesses a single axial ligand. Raman spectra of 64Ni-reconstituted and natural abundance Ni-reconstituted hemoglobins, obtained simultaneously in a Raman difference spectrometer, have identified the Ni-ligand stretch at 236 cm-1. The line shifts to 229 cm-1 for the 64Ni-reconstituted Hb. For a pure Ni-ligand stretch a 10-cm-1 shift would be predicted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We report the resonance Raman spectra in the frequency range 300–1800 cm?1 of Fe (III)-ovotransferrin and Fe (III)-human serum transferrin in aqueous solution at about 10?4M protein concentration. This is the first observation of resonance Raman scattering ascribable to amino acid ligand vibrational modes of a nonheme iron protein. The resonance Raman spectra of the transferrins are similar except that the resonance band near 1270 cm?1 is shifted to a higher frequency for Fe(III)-human serum transferrin than that for Fe(III)-ovotransferrin. The resonance Raman bands observed near 1170, 1270, 1500 and 1600 cm?1 may reflect resonance enhancement of p-hydroxy-phenyl frequencies of tyrosine residues and/or imidazolium frequencies of histidine residues.  相似文献   

17.
Infrared spectra of concanavalin A have been obtained both in the absence and in the presence of the metal ions, Mn2+ and Ca2+, and the saccharide, alpha-methylmannose. Second derivative calculations have been used to determine the frequencies of the different amide I and II components. In the demetallized protein dissolved in H2O buffer, absorptions in the amide I, II and III regions at 1695 and 1634, 1532 and 1237 cm-1, respectively, are assigned to beta-structure, while absorptions at 1563 and both 1318 and 1343 cm-1 are assigned to turns and bends. After deuterium exchange, the residual amide II maximum in the difference spectrum shifts from 1538 to 1563 cm-1, indicating that exchange is faster in the beta-structure than in the turns. In the presence of Mn2+ and Ca2+, the amide II band component at 1532 cm-1 shifts 4-6 cm-1 to higher wavenumbers, and the amide I band component at 1634 shifts 1 cm-1 in the same direction, both in H2O and 2H2O buffers, suggesting changes in the hydrogen-bonding network of a large portion of the protein, particularly in the beta-sheet regions. The addition of alpha-methylmannose increases the magnitude of exchange from 55% to above 90%. Comparison with existing X-ray crystallographic data has been made, and the usefulness of FT-IR to complement this technique is discussed.  相似文献   

18.
Resonance Raman (RR) spectra of the complex of anionic semiquinoid D-amino acid oxidase (DAO) with picolinate in H2O and D2O were observed in the 300-1,750 cm-1 region. RR spectra were also measured for the complex of the semiquinoid enzyme reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]-FAD. On the basis of the isotope effects, tentative assignments of the observed bands of the anionic semiquinoid flavin were made. The spectra differ from those of oxidized, neutral semiquinoid, and anionic reduced flavins previously reported. The 1,602 cm-1 band was not shifted for any FAD labeled in ring II and/or ring III and was assigned to a ring I mode. The 1,516 cm-1 band underwent an isotopic shift upon [4a-13C]- or [4,10a-13C2]-labeling. The band was assigned to the mode containing C(4a)-C(10a) stretching. The 1,331 and 1,292 cm-1 bands shifted upon [4a-13C]- or [5-15N]-labeling and were assigned to the modes containing C(4a)-N(5) stretching. The 1,217 and 1,188 cm-1 bands were assigned to the skeletal vibrations of ring III coupled with the N(3)-H bending mode. The RR spectrum of the complex of anionic semiquinoid DAO with alpha-iminopropionate or N-methyl-alpha-iminopropionate was essentially identical with that of the complex with picolinate.  相似文献   

19.
The peptide backbone conformation and salient structural details of oxytocin were examined by laser Raman spectroscopy. Spectra were obtained in the solid phase, water, 2H2O, and dimethyl sulfoxide solutions. A distinct Amide I band was obtained at 1663 cm-1 for aqueous and deuterated samples and 1666 cm-1 for the solid sample. A relatively high frequency Amide III band at 1260 cm-1 was obtained. It is concluded that these Amide I and III bands arise from the "beta-turn"-like conformation of oxytocin. The tyrosine side chain, according to the I850 cm-1/I830 cm-1 intensity ratio, is exposed to the solvent. The S-S stretching vibration at 512 cm-1 indicates the conformation of C-C-S-S-C-C in the disulfide bridge of oxytocin in the ring is gauche-gauche-gauche.  相似文献   

20.
M Jackson  H H Mantsch 《Biopolymers》1991,31(10):1205-1212
The structure of valinomycin in a range of organic solvents of varying polarity and in detergent and lipid dispersions has been studied by Fourier transform ir spectroscopy. In solvents of low polarity such as chloroform, ir spectra of valinomycin are fully consistent with the bracelet structure proposed on the basis of nmr spectroscopy, showing a single narrow amide I component attributable to the presence of beta-turns and a single band arising from nonhydrogen-bonded ester C = O groups. K+ complexation results in a downward shift in the amide I band frequency, indicating an increase in the strength of the amide hydrogen bonds, along with a shift to lower frequencies of the ester C = O absorption due to a reduction in electron density in these bonds upon complexation. Identical results were obtained with NH4+, a finding not previously reported. In solvents of both medium (CHCl3/DMSO 3:1) and high (pure DMSO) polarity, we find evidence of significant disruption of the internal hydrogen-bonding network of the peptide and the appearance of a band suggesting the presence of free amide C = O groups. In such solvents, complexation with K+ and NH4+ was not observed. The structure of valinomycin in detergent micelles resembles that in nonpolar organic solvents. However, changes were found in the amide I and ester carbonyl maxima as 2H2O penetrated the micelle which suggest significant interaction between the solvent and peptide. Complexation with K+ was reduced in cationic detergent micelles as a result of a decrease in the effective K+ concentration due to charge repulsion at the micelle surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号