首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc1-complex (complex III) and E. coli quinol oxidase (cytochrome bo3 complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQNf (fast relaxing semiquinone) and SQNs (slow relaxing semiquinone). It was proposed that QNf serves as a “direct” proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while QNs works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which QNf plays a role in a “direct” redox-driven proton pump, while QNs triggers an “indirect” conformation-driven proton pump. QNf and QNs together serve as (1e?/2e?) converter, for the transfer of reducing equivalent to the Q-pool.  相似文献   

2.
This work tested the hypothesis that thylakoid localized proton-binding domains, suggested to be involved in localized -driven ATP formation, are maintained with the involvement of several membrane proteins, including the LHCII (Laszlo, J. A., Baker, G. M., and Dilley, R. A. (1984) Biochim. Biophys. Acta 764, 160–169), which comprises about 50% of the total thylakoid protein. The concept we have in mind is that several membrane proteins cooperate to shield a localized proton diffusion pathway from direct contact with the lumen, thus providing a physical barrier to H+ equilibration between the sequestered domains and the lumen. A barely mutant,chlorina f 2, that lacks Chl b and does not accumulate some of the LHCII proteins, was tested for its capacity to carry out localized-proton gradient-dependent ATP formation. Two previously developed assays permit clear discrimination between localized and delocalized gradient-driven ATP formation. Those assays include the effect of a permeable buffer, pyridine, on the number of single-turnover flashes needed to reach the energetic threshold for ATP formation and the more recently developed assay for lumen pH using 8-hydroxy-1,3,6-pyrene trisulfonic acid as a lumenally loaded pH-sensitive fluorescent probe. By those two criteria, the wild-type barley thylakoids revealed either a localized or a delocalized energy coupling mode under low- or high-salt storage conditions, respectively. Addition of Ca++ to the high-salt storage medium caused those thylakoids to maintain a localized energy-coupling response, as previously observed for pea thylakoids. In contrast, thechlorina f 2 mutant thylakoids had an active delocalized energy coupling activity but did not show localized energy coupling under any conditions, and added Ca++ to the thylakoid storage medium did not alter the delocalized energy coupling mode. One interpretation of the results is that the absence of the LHCII polypeptides produces a leaky pathway for protons which allows the gradient to equilibrate with the lumen under all conditions. Another interpretation is possible but seems less likely, that being that the absence of the LHCII polypeptides in some way causes the proposed Ca++ -gated H+ flux site on the membrane sector (CF0) of the energy coupling complex to lose its gating function.  相似文献   

3.
The success of Sazanov's group in determining the X-ray structure of the whole bacterial complex I is a great contribution to the progress of complex I research. In this mini-review of 35 years' history of my laboratory and collaborators, we characterized the function of protein-associated semiquinone molecules in the proton-pumping mechanism in complex I (NADH-quinone oxidoreductase). We have constructed most of the frame work of our hypothesis, utilizing EPR techniques before the X-ray structures of complex I were reported by Sazanov's and Brandt's groups. One of the semiquinones (SQNf) is extremely sensitive to a proton motive force imposed on the energy-transducing membrane, while the other (SQNs) is insensitive. Their sensitivity to rotenone inhibition also differs. These differences were exploited using tightly coupled bovine heart submitochondrial particles with a high respiratory control ratio (> 8). We determined the distance between SQNf and iron–sulfur cluster N2 on the basis of their direct spin–spin interaction. We are extending this line of work using reconstituted bovine heart complex I proteoliposomes which shows a respiratory control ratio > 5. Two frontier research groups support our view point based on their mutagenesis studies. High frequency (33.9 GHz; Q-band) EPR experiments appear to favor our two-semiquinone model. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
When isolated rat liver mitochondria are incubated in KCl medium, matrix volume, flux, and forces in both hypo- and hyperosmolarity are time-dependent. In hypoosmotic KCl medium, matrix volume is regulated via the K+/H+ exchanger. In hyperosmotic medium, the volume is regulated in such a manner that at steady state, which is reached within 4 min, it is maintained whatever the hyperosmolarity. This regulation is Pi- and -dependent, indicating Pi-K salt entry into the matrix. Under steady state, hyperosmolarity has no effect on isolated rat liver mitochondria energetic parameters such as respiratory rate, proton electrochemical potential difference, and oxidative phosphorylation yield. Hypoosmolarity decreases the NADH/NAD+ ratio, state 3 respiratory rate, and , while oxidative phosphorylation yield is not significantly modified. This indicates kinetic control upstream the respiratory chain. This study points out the key role of potassium on the regulation of matrix volume, flux, and forces. Indeed, while matrix volume is regulated in NaCl hyperosmotic medium, flux and force restoration in hyperosmotic medium occurs only in the presence of external potassium.  相似文献   

5.
Complex I (NDH-1) translocates protons across the membrane using electron transfer energy. Two different coupling mechanisms are currently being discussed for complex I: direct (redox-driven) and indirect (conformation-driven). Semiquinone (SQ) intermediates are suggested to be key for the coupling mechanism. Recently, using progressive power saturation and simulation techniques, three distinct SQ species were resolved by EPR analysis of E. coli complex I reconstituted into proteoliposomes. The fast-relaxing SQ (SQNf) signals completely disappeared in the presence of the uncoupler gramicidin D or the potent E. coli complex I inhibitor squamotacin. The slow-relaxing SQ (SQNs) signals were insensitive to gramicidin D, but they were sensitive to squamotacin. The very slow-relaxing SQ (SQNvs) signals were insensitive to both gramicidin D and squamotacin. Interestingly, no SQNs signal was observed in the ΔNuoL mutant, which lacks transporter module subunits NuoL and NuoM. Furthermore, we sought out the effect of using menaquinone (which has a lower redox potential compared to that of ubiquinone) as an electron acceptor on the proton pumping stoichiometry by in vitro reconstitution experiments with ubiquinone-rich or menaquinone-rich double knock-out membrane vesicles, which contain neither complex I nor NDH-2 (non-proton translocating NADH dehydrogenase). No difference in the proton pumping stoichiometry between menaquinone and ubiquinone was observed in the ΔNuoL and D178N mutants, which are considered to lack the indirect proton pumping mechanism. However, the proton pumping stoichiometry with menaquinone decreased by half in the wild-type. The roles and relationships of SQ intermediates in the coupling mechanism of complex I are discussed.  相似文献   

6.
The electrochemical gradient of protons, , was estimated in the obligatory aerobic yeastRhodotorula glutinis in the pH0 range from 3 to 8.5. The membrane potential, , was measured by steady-state distribution of the hydrophobic ions, tetraphenylphosphonium (TPP+) for negative above pH0 4.5, and thiocyanate (SCN) for positive below pH0 4.5. The chemical gradient of H+ was determined by measuring the chemical shift of intracellular Pi by31P-NMR at given pH0 values. The values of pHi increased almost linearly from 7.3 at pH0 3 to 7.8 at pH0 8.5. In the physiological pH0 range from 3.5 to 6, was fairly constant at values between 17–18 KJ mol–1, gradually decreasing at pH0 above 6. In deenergized cells, the intracellular pHi decreased to values as low as 6, regardless of whether the cell suspension was buffered at pH0 4.5 or 7.5. There was no membrane potential detectable in deenergized cells.  相似文献   

7.
In previous work, calcium ions, bound at the lumenal side of the CF0H+ channel, were suggested to keep a H+ flux gating site closed, favoring sequestered domain H+ ions flowing directly into the CF0-CF1 and driving ATP formation by a localized gradient. Treatments expected to displace Ca++ from binding sites had the effect of allowing H+ ions in the sequestered domains to equilibrate with the lumen, and energy coupling showed delocalized characteristics. The existence of such a gating function implies that a closed-gate configuration would block lumenal H+ ions from entering the CF0-CF1 complex. In this work that prediction was tested using as an assay the dark, acid-base jump ATP formation phenomenon driven by H+ ions derived from succinic acid loaded into the lumen.Chlorpromazine, a photoaffinity probe for many proteins having high-affinity Ca++-binding sites, covalently binds to the 8-kDa CF0 subunit in the largest amounts when there is sufficient Ca++ to favor the localized energy coupling mode, i.e., the gate closed configuration. Photoaffinity-bound chlorpromazine blocked 50% or more of the succinate-dependent acid-base jump ATP formation, provided that the ionic conditions during the UV photoaffinity treatment were those which favor a localized energy coupling pattern and a higher level of chlorpromazine labeling of the 8-kDa CF0 subunit. Thylakoids held under conditions favoring a delocalized energy coupling mode and less chlorpromazine labeling of the CF0 subunit did not show any inhibition of acid-base jump ATP formation.Chlorpromazine and calmidazolium, another Ca++-binding site probe, were also shown to block redox-derived H+ initially released into sequestered domains from entering the lumen, at low levels of domain H+ accumulation, but not at higher H+ uptake levels; ie., the closed gate state can be overcome by sufficiently acidic conditions. That is consistent with the observation that the inhibition of lumenal succinate-dependent ATP formation by photoaffinity-attached chlorpromazine can be reversed by lowering the pH of the acid stage from 5.5 to 4.5.The evidence is consistent with the concept that Ca++ bound at the lumenal side of the CF0 H+ channel can block H+ flux from either direction, consistent with the existence of a molecular structure in the CF0 complex having the properties of a gate for H+ flux across the inner boundary of the CF0. Such a gate could control the expression of localized or delocalized energy coupling gradients.  相似文献   

8.
Henrik Laasch 《Planta》1989,178(4):553-560
A series of tertiary amines was investigated for effects on the transmembrane proton potential difference ( H), on photophosphorylation and on electron-flux control related to the intrathylakoid proton potential ( HI), using isolated chloroplasts ofSpinacia oleracea L. As indicated by 9-aminoacridine fluorescence and [14C]methylamine uptake, all amines studied inhibited a build-up of H and, in parallel, ATP synthesis. Even when H was low, strong H1-dependent electron-flux control was observed under the influence of tertiary amines. The strength of flux control in the presence of low H and the effectiveness of inhibition of ATP synthesis linearly increased with the lipophilicity of the amines. The most effective of the amines tested caused 50% inhibition of ATP synthesis at a concentration of 6 M, which is about 1000-fold lower than the concentration required for inhibition by methylamine. The data presented indicate the existence of two proton domains in the thylakoid vesicles, one of them feeding the ATP-synthase, the other the sites of pH-dependent electron-flux control. It is concluded that tertiary amines develop their action in a lipophilic domain of the thylakoid membrane, in the vicinity of the ATP-synthase complex. A mechanism for selective uncoupling and for the maintenance of HI-dependent electron flux control in the presence of low H is discussed.Abbreviations and symbols coefficient for pH-dependent electron flux control - 9-AA 9-aminoacridine - Chl chlorophyll - I50 amine concentration producing 50% inhibition of ATP-synthesis - Je flux of photosynthetic electron transport - k H apparent rate constant for proton efflux - H1 proton potential in the thylakoid lumen - H1 transthylakoid proton potential difference - p partition coefficient - q AA coefficient for 9-aminoacridine fluorescence quenching - PS photosystem - Q quantum flux of photosynthetically active light Dedicated to Professor Wilhelm Simonis, on the occasion of his 80th birthday  相似文献   

9.
Summary The evidence that all energy transducing membranes can generate a proton electrochemical potential difference, H, across the membrane and that this potential can be used to transfer energy among energy transducing units and to generate ATP, has increased the interest for the view that H plays an obligatory role in energy transduction and ATP synthesis. In the present article we shall concentrate on two experimental questions related with the generation and role of H: (a) the charge/site ratio; (b) the relation between the proton electrochemical potential on one side and the cation electrochemical potential, the phosphate potential and the redox potential on the other. We shall then discuss the view that energy transduction corresponds to a molecular energy machine rather than to a fuel cell.  相似文献   

10.
Transport of H+, K+, Na+ and Ca++ in Streptococcus   总被引:6,自引:0,他引:6  
Summary The streptococci differ from other bacteria in that cation translocations (with the possible exception of one of the K+ uptake systems) occur by primary transport systems, i.e., by cation pumps which use directly the free energy released during hydrolysis of chemical bonds to power transport. Transport systems in other bacteria, especially for Na+ and Ca++, are often secondary, using the free energy of another ion gradient to drive cation transport. In streptococci H+ efflux occurs via the F1F0-ATPase. This enzyme is composed of eight distinct subunits. Three of the subunits are embedded in the membrane and form a H+ channel; this is called the F0 portion of the enzyme. The other five subunits form the catalytic part of the enzyme, called F1, which faces the cytoplasm and can easily be stripped from the membrane. Physiologically, this enzyme functions as a H+-ATPase, pumping protons out of the cell to form an electrochemical proton gradient, . The F1F0-ATPase, however, is fully reversible and if supplied with Pi, ADP and a + of sufficient magnitude (ca –200 mv) catalyzes the synthesis of ATP. Streptococcus faecalis can accumulate K+ and establish a gradient of 50 000:1 (in>out) under some conditions. Uptake occurs by two transport systems. The dominant, constitutive system requires both an electrochemical proton gradient and ATP to operate. The minor, inducible K+ transport system, which has many similarities to the K+-ATPase of the Kdp transport system found in Escherichia coli, requires only ATP to power K+ uptake.Sodium extrusion occurs by a Na+/H+-ATPase. Exchange is electroneutral and there is no requirement for a . The possibility that the Na+/H+-ATPase may consist of two parts, a catalytic subunit and a Na+/H+ antiport subunit, is suggested by the finding that damage to the Na+ transport system either through mutation or protease action leads to the appearance of -requiring Na+/H+ antiporter activity.Ca++ like Na+ is extruded from metabolizing, intact cells. Transport requires no but does require ATP. Reconstitution of Ca++ transport activity with accompanying Ca++-stimulated ATPase activity into proteoliposomes suggests that Ca++ is transported by a Ca++-translocating ATPase.Where respiring organelles and bacteria use secondary transport systems the streptococci have developed cation pumps. The streptococci, which are predominantly glycolyzing bacteria, generate a much inferior to that of respiring organisms and organelles. The cation pumps may have developed simply in response to an inadequate .Abbreviations electrochemical potential of protons - membrane potential - pH pH gradient - p proton-motive force - DCCD N,Na1-dicyclohexlcarbodiimide - TCS tetrachlorosalicylanilide - FCCP carbonylcyanide-p-trifluoromethylphenylhydrazone - CCCP carbonylcyanie-m-chlorophenylhydrazone - TPMP+ triphenylmethyl phosphonium ion - DDA+ dibenzyldimethylammonium ion - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - EGTA ethyleneglycol-bis (amino-ethyl-ether)-N,N-tetraacetic acid  相似文献   

11.
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps ( generators) are described, i.e., Na+-motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. InVibrio alginolyticus, it was found that , generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). InPropionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, inV. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+-motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerantBacillus FTU, there are H+ - and Na+-motive terminal oxidases. Sometimes, the Na+-translocating enzyme strongly differs from its H+-translocating homolog. So, the Na+-motive and H+-motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+-motive and Na+-motive terminal oxidases differ in that the former is ofaa 3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the sameP. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary generator(s) and consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera:Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcin, etc. Thus, the sodium world seems to occupy a rather extensive area in the biosphere.  相似文献   

12.
Summary The rate of inorganic carbon uptake and its steadystate accumulation ratio (intracellular/extracellular concentration) was determined in the cyanobacteriumAnabaena variabilis as a function of extracellular pH. The free energy of protons ( ) across the plasmalemma was calculated from determinations of membrane potential, and intracellular pH, as a function of the extracellular pH. While inward proton motive force decreased with increasing extracellular pH from 6.5 to 9.5, rate of HCO 3 influx and its accumulation ration increased. The latter is several times larger than would be expected should HCO 3 influx be driven by . It is concluded that HCO 3 transport in cyanobacteria is not driven by the proton motive force.  相似文献   

13.
Mitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (n) for the coupled reaction of NADH oxidation by the quinone acceptors. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q1 gives the value of n = 4. Thermally induced deactivation of Complex I [1,2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q1-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q1-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex I as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.  相似文献   

14.
NADH–quinone (Q) oxidoreductase is a large and complex redox proton pump, which utilizes the free energy derived from oxidation of NADH with lipophilic electron/proton carrier Q to translocate protons across the membrane to generate an electrochemical proton gradient ( ). Although its molecular mechanism is largely unknown, recent biochemical, biophysical, and molecular biological studies have revealed that particular subunits and cofactors play an essential role in the energy-coupling reaction. Based on these latest experimental data, we exhaustively analyzed the sequence information available from evolutionarily related enzymes such as [NiFe] hydrogenases. We found significant and conserved sequence differences in the PSST/Nqo6/NuoB, 49kDa/Nqo4/NuoD, and ND1/Nqo8/NuoH subunit homologs between complex I/NDH-1 and [NiFe] hydrogenases. The alterations, especially in the postulated ligand motif for cluster N2 in the PSST/Nqo6/NuoB subunits, appear to be evolutionarily important in determining the physiological function of complex I/NDH-1. These observations led us to propose a hypothetical evolutionary scheme: during the course of evolution, drastic changes have occurred in the putative cluster N2 binding site in the PSST/Nqo6/NuoB subunit and the progenitors of complex I/NDH-1 have concurrently become to utilize a lipophilic electron/proton carrier such as Q as its physiological substrate. This scheme provides new insights into the structure and function relationship of complex I/NDH-1 and may help us understand its energy-coupling mechanism.  相似文献   

15.
Electron transport-coupled phosphorylation with fumarate as terminal acceptor inWolinella succinogenes yields less than 1 ATP/2 electrons. The generated by the electron transport is 0.18V and the H+/electron ratio is 1. The electron transport chain is made up of two dehydrogenases (hydrogenase and formate dehydrogenase) that catalyze the reduction of menaquinone, and fumarate reductase which catalyzes the oxidation of menaquinol.C-type cytochromes are not involved. The phosphorylative electron transport with sulfur as terminal acceptor inW. succinogenes orDesulfuromonas acetoxidans does not involve known quinones. The ATP yields should be even smaller than those with fumarate. Succinate oxidation by sulfur, which is a catabolic reaction inD. acetoxidans, is accomplished by reversed electron transport.  相似文献   

16.
An analytical model is developed to describe the performance of a packed-bed immobilized enzyme reactor in which parallel processes take place. In particular, two-substrate reaction, inhibition of the enzyme by one of the reaction products, and binding of one substrate and/or one product to an added ligand are taken into account. In addition, substrates and product diffusion into the porous catalyst are also considered. Using this model, numerical simulations were performed. The results point to the fact that, when all the above processes occur concomitantly, a variety of performance characteristics can be obtained, depending on the particular values of the related parameters. Moreover, under certain conditions, the reactor performance can be improved by controlled addition of ligand.List of Symbols A total concentration of ligand - C 1,i concentration of Substrate-1 in the pores of stage i - C 2,i concentration of Substrate-2 in its free form in the pores of stage i - 2,i concentration of the Substrate-2-Ligand Complex in the pores of stage i - total concentration of Substrate-2 in the pores of stage i - i concentration of the Product-Ligand Complex in the pores of stage i - concentration of the free Product in the pores of stage i - total concentration of the Product in the pores of stage i - internal (pore) diffusion coefficient for the Substrate-Ligand Complex - D 1 internal (pore) diffusion coefficient of Substrate-1 - D 2 internal (pore) diffusion coefficient of Substrate-2 - effective (pore) diffusion coefficient for Substrate-2 - internal (pore) diffusion coefficient for the Product - internal (pore) diffusion coefficient for the Product-Ligand Complex - effective (pore) diffusion coefficient for the Product - K thermodynamic equilibrium constant for binding Substrate-2 to Ligand - K m,1,K m,2 Michaelis constants for Substrates-1 and 2, respectively - effective Michaelis constant for Substrate-2 - K p thermodynamic equilibrium constant for binding the reaction Product to Ligand - effective equilibrium constant for binding Substrate-2 to Ligand - effective equilibrium constant for binding the reaction Product to Ligand. - K b inhibition constant - K q inhibition constant - effective inhibition constant - effective inhibition constant - k a, k d association and dissociation rate constants for Substrate-2 — Ligand complex - association and dissociation constants for Product —Ligand complex - n total number of elementary stages in the reactor - Q volumetric flow rate throughout the reactor - R j,i reaction rate of Substrate-j in stage i, in terms of volumetric units - S 1,0 concentration of Substrate-1 in the reactor feed - total concentration of Substrate-2 in the reactor feed - S 1,i–1,S 1,i concentration of Substrate-1 in the bulk phase leaving stages i–1 and i, respectively - S 2,i concentration of Substrate-2 in its free form, in the bulk phase leaving stage i - 2,i–1, 2,i concentration of Substrate-2 in the bulk phase leaving stage i–1 and i, respectively - total concentration of Substrate-2 in the bulk phase leaving stages i–1 and i, respectively - i concentration of the Product-Ligand Complex in the bulk phase of stage i - concentration of free Product in the bulk phase of stage i - total concentration of Product in the bulk phase of stage i - V total volume of the reactor - V m maximal reaction rate in terms of volumetric units - y axial coordinate of the pores - y 0 depth of the pores Greek Symbols 1 dimensionless parameter - dimensionless parameter - dimensionless parameter - 1 dimensionless parameter - dimensionless parameter - 1,i dimensionless concentration of Substrate-1 in pores of stage i - dimensionless total concentration of Substrate-2 (in both free and bound form) in pores of stage i - dimensionless total concentration of the reaction product in the pores of stage i - 1 dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless position along the pore - volumetric packing density of catalytic particles (dimensionless) - porosity of the catalytic particles (dimensionless) - 1,i dimensionless concentration of Substrate-1 in the bulk phase of stage i - dimensionless total concentration of Substrate-2 (in both free and bound form) in the bulk phase of stage i  相似文献   

17.
Besides major NADH-, succinate-, and other substrate oxidase reactions resulting in four-electron reduction of oxygen to water, the mitochondrial respiratory chain catalyzes one-electron reduction of oxygen to superoxide radical followed by formation of hydrogen peroxide. In this paper the superoxide generation by Complex I in tightly coupled bovine heart submitochondrial particles is quantitatively characterized.The rate of superoxide formation during -controlled respiration with succinate depends linearly on oxygen concentration and contributes approximately 0.4% of the overall oxidase activity at saturating (0.25 mM) oxygen. The major part of one-electron oxygen reduction during succinate oxidation (80%) proceeds via Complex I at the expense of its -dependent reduction (reverse electron transfer). At saturating NADH the rate of formation is substantially smaller than that with succinate as the substrate. In contrast to NADH oxidase,the rate-substrate concentration dependence for the superoxide production shows a maximum at low (50 µM)concentrations of NADH. NAD+ and NADH inhibit the succinate-supported superoxide generation. Deactivation of Complex I results in almost complete loss of its NADH-ubiquinone reductase activity and in increase in NADH-dependent superoxide generation. A model is proposed according to which complex I has two redox active nucleotide binding sites.One site (F) serves as an entry for the NADH oxidation and the other one (R) serves as an exit during either the succinate-supported NAD+ reduction or superoxide generation or NADH-ferricyanide reductase reaction.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 150–159.Original Russian Text Copyright © 2005 by Vinogradov, Grivennikova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

18.
Wolinella succinogenes grown on formate and elemental sulphur was found to use the polysulphide derivatives 2,2-tetrathiobispropionate (R2S4) or pentathionate (S5O 6 = ) as acceptors for formate oxidation. The specific activities of formate oxidation with these acceptors were similar to those with elemental sulphur. The main reaction products of R2S4 reduction were 2,2-dithiobispropionate (R2S2) and sulphide. Pentathionate was converted to thiosulphate and some elemental sulphur. The electrochemical proton potential across the cytoplasmic membrane of the bacterium was measured in the steady state of electron transport from formate to R2S4. The electrical proportion () of the determined through the distribution of labeled tetraphenylphosphonium cation was obtained as 0.17 Volt. The was zero, when a protonophore was present. The pH-difference across the membrane was negligible. Thus the generated by sulphur respiration is close to that measured earlier with fumarate as the terminal acceptor of electron transport.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - R2Sn (n=2–5) 2,2-polythiobispropionate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazol - TPP tetraphenylphosphonium cation  相似文献   

19.
Methanogenic archaea are strictly anaerobic organisms that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2+CO2 and formate are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. A limited number of methanogenic organisms utilize acetate by the aceticlastic pathway. Redox reactions involved in these processes are partly catalyzed by membrane-bound enzyme systems that generate or, in the case of endergonic reactions, use electrochemical ion gradients. The H2:heterodisulfide oxidoreductase, the F420H2:heterodisulfide oxidoreductase and the CO:heterodisulfide oxidoreductase, are novel systems that generate a proton motive force by redox-potential-driven H+ translocation. The methyltetrahydromethanopterin:coenzyme M methyltransferase is a unique, reversible sodium ion pump that couples methyl transfer with the transport of Na+ across the cytoplasmic membrane. Formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation, of methanofuran. In summary, the pathways are coupled to the generation of an electrochemical sodium ion gradient and an electrochemical proton gradient. Both ion gradients are used directly for ATP synthesis via membrane integral ATP synthases. The function of the above-mentioned systems and their components in the metabolism of methanogens are described in detail.Abbreviations DCCD N,N dicyclohexylcarbodiimide - F 420 (N-l-Lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8 didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - H 4MPT Tetrahydromethanopterin - HS-CoM 2-Mercaptoethanesulfonate - HS-HTP 7-Mercaptoheptanoyl-O-phospho-l-threonine - MF Methanofuran - Ms Methanosarcina - Mc Methanococcus - Mb Methanobacterium - SF 6847 3,5-Di-tert-butyl-4-hydroxybenzylidene-malononitrile - Electrochemical sodium ion gradient - Electrochemical proton gradient  相似文献   

20.
Summary The effects of different ambient temperatures (T a) on gas exchange and ventilation in deer mice (Peromyscus maniculatus) were determined after acclimation to low and high altitude (340 and 3,800 m).At both low and high altitude, oxygen consumption ( ) decreased with increasingT a atT a from –10 to 30 °C. The was 15–20% smaller at high altitude than at low altitude atT a below 30 °C.Increased atT a below thermoneutrality was supported by increased minute volume ( ) at both low and high altitude. At mostT a, the change in was primarily a function of changing respiration frequency (f); relatively little change occurred in tidal volume (V T) or oxygen extraction efficiency (O2EE). AtT a=0 °C and below at high altitude, was constant due to decliningV T and O2EE increased in order to maintain high .At high altitude, (BTP) was 30–40% higher at a givenT a than at low altitude, except atT a below 10 °C. The increased at high altitude was due primarily to a proportional increase inf, which attained mean values of 450–500 breaths/min atT a below 0 °C. The (STP) was equivalent at high and low altitude atT a of 10 °C and above. At lowerT a, (STPD) was larger at low altitude.At both altitudes, respiratory heat loss was a small fraction (<10%) of metabolic heat production, except at highT a (20–30 °C).Abbreviations EHL evaporative heat loss - f respiration frequency - HL a heat loss from warming tidal air - HL e evaporative heat loss in tidal air - HL total respiratory heat loss - MHP metabolic heat production - O 2 EE oxygen extraction efficiency - RQ respiratory quotient - T a ambient temperature - T b body temperatureT lc lower critical temperature - carbon dioxide production - evaporative water loss - oxygen consumption - minute volume - V T tidal volume  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号