首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Use of the piggyBac transposon for germ-line transformation of insects   总被引:8,自引:0,他引:8  
Germ-line transformation of insects is now possible with four independent transposable element vector systems. Among these, the TTAA-insertion site specific transposon, piggyBac, discovered in Trichoplusia ni, is one of the most widely used. Transformations have been achieved in a wide variety of dipterans, lepidopterans, and a coleopteran, and for many species, piggyBac transposition was first tested by plasmid-based mobility assays in cell lines and embryos. All plasmid and genomic insertions are consistent with the duplication of a TTAA insertion site, and most germ-line integrations appear to be stable, though this is largely based on stable marker phenotypes. Of the vector systems presently in use for non-drosophilids, piggyBac is the only one not currently associated with a superfamily of transposable elements, though other elements exist that share its TTAA insertion site specificity. While functional piggyBac elements have only been isolated from T. ni, nearly identical elements have been discovered in a dipteran species, Bactrocera dorsalis, and closely related elements exist in another moth species, Spodoptera frugiperda. It appears that piggyBac has recently traversed insect orders by horizontal transmission, possibly mediated by a baculovirus or other viral system. This interspecies movement has important implications for the practical use of piggyBac to create transgenic insect strains for field release.  相似文献   

2.
Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori   总被引:11,自引:0,他引:11  
Imamura M  Nakai J  Inoue S  Quan GX  Kanda T  Tamura T 《Genetics》2003,165(3):1329-1340
The silkworm Bombyx mori is one of the most well-studied insects in terms of both genetics and physiology and is recognized as the model lepidopteran insect. To develop an efficient system for analyzing gene function in the silkworm, we investigated the feasibility of using the GAL4/UAS system in conjunction with piggyBac vector-mediated germ-line transformation for targeted gene expression. To drive the GAL4 gene, we used two endogenous promoters that originated from the B. mori actin A3 (BmA3) and fibroin light-chain (FiL) genes and the artificial promoter 3xP3. GFP was used as the reporter. In initial tests of the function of the GAL4/UAS system, we generated transgenic animals that carried the UAS-GFP construct plus either BmA3-GAL4 or 3xP3-GAL4. GFP fluorescence was observed in the tissues of GFP-positive animals, in which both promoters drove GAL4 gene expression. Animals that possessed only the GAL4 gene or UAS-GFP construct did not show GFP fluorescence. In addition, as a further test of the ability of the GAL4/UAS system to drive tissue-specific expression we constructed FiL-GAL4 lines with 3xP3-CFP as the transformation marker. FiL-GAL4 x UAS-GFP crosses showed GFP expression in the posterior silk gland, in which the endogenous FiL gene is normally expressed. These results show that the GAL4/UAS system is applicable to B. mori and emphasize the potential of this system for controlled analyses of B. mori gene function.  相似文献   

3.
A M Handler  R A Harrell 《BioTechniques》2001,31(4):820, 824-820, 828
Genetic transformation of most insect systems requires dominant-acting markers that do not depend on reverting a mutant phenotype in a host strain, andfor this purpose GFP has proven to be useful in several insect orders. However, detection of multiple transgenes and reporters for gene expression requires the development of new visible markers that can be unambiguously detected when co-expressed with GFP The DsRed fluorescentprotein has spectral characteristics that are most distinct from GFP and GFP variants, and we have explored the use of DsRed as a selectable marker for piggyBac transformation in Drosophila melanogaster and its use as a reporter when co-expressed with GFP. Transformants marked with polyubiquitin-regulated DsRed1 were detected throughout development at a relatively high frequency, and they exhibited brighter fluorescence than transformants marked with EGFP. The use of a Texas Red filter set eliminated detection of EGFP fluorescence and autofluorescence, and DsRed expressedfrom a reporter construct could be unambiguously detected when co-expressed with EGFP DsRed should prove to be a highly efficient marker system for the selection of transformant insects and as a reporter in gene expression studies.  相似文献   

4.
The re-emergence of arboviral diseases such as Dengue Fever and La Crosse encephalitis is primarily due to the failure of insect vector control strategies. The development of a procedure capable of producing stable germ-line transformants in the insect vectors of these diseases would bridge the gap between gene expression systems being developed to curb vector transmission and the identification of important genes and regulatory sequences and their reintroduction back into the insect genome in the form of vector control strategies. The transposable element piggyBac is capable of transposition in a variety of insect species, and could serve as a versatile insect transformation vector. Using plasmid-based excision and transposition assays, we report that this short-ITR transposon undergoes precise, transposase-dependent excision and transposition in embryos of Aedes albopictus and Aedes triseriatus, the vectors of Dengue fever and LaCrosse encephalitis, respectively. These assays allow us easily and rapidly to confirm and assess the potential utility of piggyBac as a gene transfer tool in a given species. piggyBac is an exceptionally mobile and versatile genetic transformation vector, comparable to other transposons currently in use for the transformation of insects. The mobility of the piggyBac element seen in both Ae. albopictus and Ae. triseriatus is further evidence that it can be employed as a germ-line vector in important insect disease vectors.  相似文献   

5.
Transgenic insects have been artificially produced to study functions of interesting developmental genes, using insect transposons such as piggyBac. In the case of the cricket, however, transgenic animals have not yet been successfully artificially produced. In the present study, we examined whether the piggyBac transposon functions as a tool for gene delivery in embryos of Gryllus bimaculatus. We used either a piggyBac helper plasmid or a helper RNA synthesized in vitro as a transposase source. An excision assay revealed that the helper RNA was more effective in early Gryllus eggs to transpose a marker gene of eGFP than the helper plasmid containing the piggyBac transposase gene driven by the G. bimaculatus actin3/4 promoter. Further, only when the helper RNA was used, somatic transformation of the embryo with the eGFP gene was observed. These results suggest that the piggyBac system with the helper RNA may be effective for making transgenic crickets.  相似文献   

6.
A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.  相似文献   

7.
Fluorescent proteins such as green fluorescent protein (GFP) from Aequorea victoria are often used as markers for transient expression and stable transformation in plants, given that their detection does not require a substrate and they can be monitored in a nondestructive manner. We have now evaluated the red fluorescent protein DsRed2 (a mutant form of DsRed from Discosoma sp.) for its suitability as a visual marker in combination with antibiotic selection for genetic transformation of soybean [Glycine max (L.) Merrill]. Transient and stable expression of DsRed2 in somatic embryos was readily detected by fluorescence microscopy, allowing easy confirmation of gene introduction. We obtained several fertile transgenic lines, including homozygous lines, that grew and produced seeds in an apparently normal manner. The red fluorescence of DsRed2 was detected by fluorescence microscopy without background fluorescence in both leaves and seeds of the transgenic plants. Furthermore, in contrast to seeds expressing GFP, those expressing DsRed2 were readily identifiable even under white light by the color conferred by the transgene product. The protein composition of seeds was not affected by the introduction of DsRed2, with the exception of the accumulation of DsRed2 itself, which was detectable as an additional band on electrophoresis. These results indicate that DsRed2 is a suitable reporter (even more suitable than GFP) for genetic transformation of soybean.  相似文献   

8.
Germline transformation systems for nearly 20 insect species have been derived from transposable elements, allowing the development of transgenic insects for basic and applied studies. These systems use a defective nonautonomous vector that results in stable vector integrations after the disappearance of transiently provided transposase helper plasmid, which is essential to maintain true breeding lines and consistent transgene expression that would otherwise be lost after vector remobilization. The risk of remobilization by an unintended transposase source has so far not been a concern for laboratory studies, but the prospective use of millions of transgenic insects in biocontrol programs will likely increase the risk, therefore making this a critical issue for the ecological safety of field release programs. Here we describe an efficient method that deletes a terminal repeat sequence of a transposon vector after genomic integration. This procedure prevents transposase-mediated remobilization of the other terminal sequence and associated genes, ensuring their genomic stability.  相似文献   

9.
We have developed a system for stable germline transformation in the silkworm Bombyx mori L. using piggyBac, a transposon discovered in the lepidopteran Trichoplusia ni. The transformation constructs consist of the piggyBac inverted terminal repeats flanking a fusion of the B. mori cytoplasmic actin gene BmA3 promoter and the green fluorescent protein (GFP). A nonautonomous helper plasmid encodes the piggyBac transposase. The reporter gene construct was coinjected into preblastoderm eggs of two strains of B. mori. Approximately 2% of the individuals in the G1 broods expressed GFP. DNA analyses of GFP-positive G1 silkworms revealed that multiple independent insertions occurred frequently. The transgene was stably transferred to the next generation through normal Mendelian inheritance. The presence of the inverted terminal repeats of piggyBac and the characteristic TTAA sequence at the borders of all the analyzed inserts confirmed that transformation resulted from precise transposition events. This efficient method of stable gene transfer in a lepidopteran insect opens the way for promising basic research and biotechnological applications.  相似文献   

10.
Selectable marker genes are needed for efficient transformation of plants. The present study focused on testing the applicability of green fluorescent protein (GFP) for selecting transgenic Petunia hybrida plants without applying antibiotics or herbicides. Based on a transient gene expression assay, the efficiency of two gfp genes, mGFP-4 and smRS-GFP, was compared. Two days after infiltration of Agrobacterium tumefaciens, GFP expression was recorded in leaf epidermal cells. The intensity of smRS-GFP fluorescence was higher than that of mGFP-4 and easier to distinguish from other unspecific fluorescent signals in Petunia. Transformations using the pMen65smRS-GFP vector, which contained the neomycin phosphotransferase II (nptII) gene, resulted in callus and shoots that visually and clearly expressed detectable GFP levels; in addition, this vector made it possible to exclusively select transformed plants using GFP. The transformation efficiencies achieved by using GFP selection versus combined kanamycin and GFP selection (nptII+GFP) were compared in four Petunia genotypes with a transformation experiment with four replications. In three out of four Petunia cultivars a higher transformation frequency was achieved by using nptII+GFP selection. Southern blot hybridisation revealed single and multiple integrations of smRS-GFP in Petunia. Single copy plants showed intensive expression in all parts of the plants, whereas a higher copy number led to only weak or partial expression of smRS-GFP allowing the visual selection of single copy events. Thus, it is possible to select transgenic Petunia plants based on their GFP expressions without applying antibiotics or herbicides.  相似文献   

11.
A fish expression vector, FRM, was constructed by fusing the carp β-actin promoter and first intron to the ocean pout antifreeze protein terminator and putative boundary element. Mutant forms of the green fluorescent protein (GFP) were engineered into this vector, and the resultant series of vectors, FRMwg, FRM3wg (green GFP), and FRM2bl (blue GFP), were used to make transgenic zebra fish. After microinjection of either supercoiled or linearized DNA into one-celled eggs, GFP-expressing cells could be monitored by fluorescence microscopy commencing with the midblastula transition and continuing through embryogenesis. From adult fish, which retained scorable GFP either as patches or as a uniform fluorescence, 11 green and 1 blue GFP-expressing lines of zebra fish have been established. Expression of GFP was nearly ubiquitous and similar among all of these lines. Embryonic expression could be scored at 15 to 30 hours postfertilization and was seen throughout the embryo with the exceptions of the yolk, red blood cells, and in some lines, portions of the head. Adult expression was in a majority of tissues (e.g., muscle, brain, intestine, and heart, but not red blood cells). The notable difference between lines was that fluorescent eggs were scorable in seven of the lines. Adult homozygotes from a different subset of eight lines could be selected by the relative intensity of the GFP marking when compared with that in sibling heterozygotes. All 12 lines contain apparent single locus, multicopy, tandem integrations (1.5–100 copies per cell) of the transgenic DNA. The fish expression vector FRM could be used to drive nearly ubiquitous and strong expression of gene products other than GFP. The GFP expression vectors, FRMwg, FRM2wg, FRM3wg, and FRM2bl, may be useful for optimization of transgenesis and as a comarker. GFP-expressing zebra fish lines could facilitate experimental analysis of chimerism and in vivo gene targeting. Received May 18, 1999; accepted August 26, 1999.  相似文献   

12.
The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable.  相似文献   

13.
The Mexican fruit fly, Anastrepha ludens, is a highly significant agricultural pest species that has been genetically transformed with a piggyBac-based transposon vector system using independent vector and transposase helper plasmids. Minimum estimated germ-line transformation frequencies were approximately 13–21% per fertile G0 individual, similar to previously reported frequencies using single vector-helper plasmids. Two vector constructs were tested with potential importance to transgenic strain development for mexfly biological control. The first allows post-integration stabilization of a transposon-vector by deletion of a terminal sequence necessary for mobilization. The complete pB[L1-EGFP-L2-DsRed-R1] vector was integrated into the Chiapas wild type strain with subsequent deletion of the L2-DsRed-R1 sub-vector carrying the piggyBac 3′ terminal sequence. Quality control tests for three of the stabilization vector lines (previous to stabilization) assessed viability at all life stages, fertility, adult flight ability, and adult male sexual competitiveness. All three transgenic lines were less fit compared to the wild strain by approximately 5–10% in most tests, however, there was no significant difference in sexual competitiveness which is the major prerequisite for optimal strain release. The second vector, pB[XL-EGFP, Asß2-tub-DsRed.T3], has the DsRed.T3 fluorescent protein reporter gene regulated by the A. suspensa Asß2-tubulin promoter, that resulted in testis and sperm-specific DsRed fluorescence in transgenic male mexflies. Fluorescent sperm bundles were unambiguously observed in the spermathecae of non-transgenic females mated to transgenic males. One transgenic line apparently had a male-specific Y-chromosome insertion, having potential use for sexing by fluorescent-embryo sorting. All transgenic lines expressed easily detectable and stable fluorescence in adults allowing their identification after trapping in the field.  相似文献   

14.
piggyBac转座子及其在转基因昆虫中的应用   总被引:1,自引:0,他引:1  
piggyBac是一种从粉纹夜蛾Trichoplusiani.中分离到的、具有TTAA插入位点特异性的DNA转座子。piggyBac可在昆虫基因组中准确切离,转化频率较高,并且不受宿主因子的限制,是目前转基因昆虫研究中应用最广的转座子载体。近年来的研究发现,piggyBac类转座子广泛分布于昆虫和其他生物基因组中。文章从piggyBac的结构、转座特性、在转基因昆虫中的应用以及piggyBac类转座子的分布等几个方面综述了piggyBac的研究进展。  相似文献   

15.
16.
利用转基因技术来探索新的蚊媒疾病防治方法,将登革病毒前膜蛋白基因prM重组入以转座子piggyBac因子为基础的载体,构建了昆虫转基因载体pB[PUBnls-EGFP-prM],在辅助质粒的作用下共同转染白纹伊蚊Aedes albopictus C6/36细胞。PCR和Southern blot证明构建的转基因载体可以将EGFP-prM基因整合入蚊虫基因组中。验证了转座子piggyBac因子、启动子polyubiquitin可以在白纹伊蚊中发挥功能,为进一步构建不传播登革病毒的转基因白纹伊蚊奠定了基础。  相似文献   

17.
Cabbage moth cells were transfected with the vector pBac[3xP3-EGFPafm] and helper phsp-pBac. Seventeen percent of the transfected cells showed stable EGFP-expression. This indicates successful and stable transformation of M. brassicae cells with a piggyBac-derived vector. Genomic integration of Bac[3xP3-EGFPafm] in stably transformed cells was confirmed by Southern blots and inverse PCR. Since the integrations are stable, and transfection with pBac[3xP3-EGFPafm] alone did not yield in transformations, no cross-reacting transposase activity seems present in M. brassicae cells. Moreover, Southern blotting with a probe for piggyBac transposase indicated the absence of piggyBac-related elements in the genome of Mamestra brassicae. Due to the tissue specificity of the 3xP3-EGFP marker for eye and nervous tissues, it is intriguing that 3xP3-EGFP can successfully be used to identify stably transformed M. brassicae cells of cell line IZD-MB0503, which is hemocyte-derived. Sequence analysis of the insertion sites showed that piggyBac inverted repeats were adjacent to TTAA sequences on both termini in all the clones. The present results are particularly important as they suggest that piggyBac can be used for transgenesis of cabbage moth cells.  相似文献   

18.
Morpholino (MO) based inhibition of translational initiation represents an attractive methodology to eliminate gene function during Xenopus development (Heasman et al., 2000). However, the degree to which a given target protein can be eliminated and the longevity of this effect during embryogenesis has not been documented. To examine the efficacy of MOs, we have used transgenic Xenopus lines that harbour known numbers of integrations of a GFP reporter under the control of the ubiquitous and highly expressed CMV promoter (Fig. 1a). In addition we have investigated the longevity of the inhibitory effect by using transgenic lines expressing GFP specifically in the lens of tadpoles. These transgenic lines represent the ideal control for the technique as the promoters are highly expressed and GFP can be easily detected by fluorescence and immunoblotting. Moreover, as GFP has no function in development, the levels of inhibition can be tested in an otherwise normal individual. Here we report that MOs are able to efficiently and specifically inhibit the translation of GFP in transgenic lines from Xenopus laevis and Xenopus tropicalis and the inhibitory effect is long-lived, lasting into the tadpole stages. genesis 30:110--113, 2001.  相似文献   

19.

Key message

The development of transgenic citrus plants by the biolistic method.

Abstract

A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.
  相似文献   

20.
We developed an efficient system for agrobacterial transformation of plum (Prunus domestica L.) leaf explants using the PMI/mannose and GFP selection system. The cultivar ‘Startovaya’ was transformed using Agrobacterium tumefaciens strain CBE21 carrying the vector pNOV35SGFP. Leaf explants were placed onto a nutrient medium containing various concentrations and combinations of mannose and sucrose to develop an efficient selection system. Nine independent transgenic lines of plum plants were obtained on a regeneration medium containing 20 g/L sucrose and 15 g/L mannose. The highest transformation frequency (1.40?%) was produced using a delayed selection strategy. Starting from the 1st days after transformation and ending by regeneration of shoots from the transgenic callus, selection of transgenic cells was monitored by GFP fluorescence that allowed avoiding formation of escapes. Integration of the manA and gfp transgenes was confirmed by PCR and Southern blotting. The described transformation protocol using a positive PMI/mannose system is an alternative selection system for production of transgenic plum plants without genes of antibiotic and herbicide resistance, and the use of leaf explants enables retention of cultivar traits of plum plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号