首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.  相似文献   

2.
TWIK1 belongs to a family of K(+) channels involved in neuronal excitability and cell volume regulation. Its tissue distribution suggests a role in epithelial potassium transport. Here we show that TWIK1 is expressed in a subapical compartment in renal proximal tubules and in polarized MDCK cells. In nonpolarized cells, this compartment corresponds to pericentriolar recycling endosomes. We identified EFA6, an exchange factor for the small G protein ADP-ribosylation factor 6 (ARF6), as a protein binding to TWIK1. EFA6 interacts with TWIK1 only when it is bound to ARF6. Because ARF6 modulates endocytosis at the apical surface of epithelial cells, the ARF6/EFA6/TWIK1 association is probably important for channel internalization and recycling.  相似文献   

3.
In the epithelia and endothelia, tight junctions regulate the movement of several substances through the paracellular pathway, maintaining several gradients between apical and basal compartments including osmolality and hydrostatic pressure. In this study, we show that the change of hydrostatic pressure gradient affected tight junctions as well as actin cytoskeleton, cell height and transcellular ion transport. Hydrostatic pressure gradient from basolateral to apical side increased transepithelial conductance and altered claudin-1 localization within several tens of minutes. These changes were promptly restored by the elimination of hydrostatic pressure gradient. Hydrostatic pressure gradient also induced dynamic changes in the actin structure and cell height. We further found that hydrostatic pressure gradient from basolateral to apical side stimulates transcellular Cl transport. Our present findings indicate that the epithelial cell structures and functions are regulated by the hydrostatic pressure gradient which is generated and maintained by the epithelia themselves.  相似文献   

4.
ARF1 and ARF6 are distant members of the ADP-ribosylation factor (ARF) small G-protein subfamily. Their distinct cellular functions must result from specificity of interaction with different effectors and regulators, including guanine nucleotide exchange factors (GEFs). ARF nucleotide-binding site opener (ARNO), and EFA6 are analogous ARF-GEFs, both comprising a catalytic "Sec7" domain and a pleckstrin homology domain. In vivo ARNO, like ARF1, is mostly cytosolic, with minor localizations at the Golgi and plasma membrane; EFA6, like ARF6, is restricted to the plasma membrane. However, depending on conditions, ARNO appears active on ARF6 as well as on ARF1. Here we analyze the origin of these ARF-GEF selectivities. In vitro, in the presence of phospholipid membranes, ARNO activates ARF1 preferentially and ARF6 slightly, whereas EFA6 activates ARF6 exclusively; the stimulation efficiency of EFA6 on ARF6 is comparable with that of ARNO on ARF1. These selectivities are determined by the GEFs Sec7 domains alone, without the pleckstrin homology and N-terminal domains, and by the ARF core domains, without the myristoylated N-terminal helix; they are not modified upon permutation between ARF1 and ARF6 of the few amino acids that differ within the switch regions. Thus selectivity for ARF1 or ARF6 must depend on subtle folding differences between the ARFs switch regions that interact with the Sec7 domains.  相似文献   

5.
ADP ribosylation factors (ARFs) of small GTPase are molecular switches regulating various membrane dynamics. Among them, ARF6 has recently been highlighted because of its function to facilitate the interaction between the cytoskeleton and the plasma membrane. Each ARFs has its preferable or even specific guanine nucleotide exchange factors (GEFs) as its activators. According to our previous RT-PCR analysis, EFA6A, a guanine nucleotide exchange factor for ARF6, was restrictedly expressed in the brain, retina and testis. Different from previous studies on neurons, EFA6A, a guanine nucleotide exchange factor for ARF6, was first shown to be localized intensely in nuclei of spermatocytes of adult mouse testes in the present immunohistochemical study. This suggests a possible involvement of EFA6A-ARF6 signaling in the karyokinesis and cytokinesis.  相似文献   

6.
In this study, we have documented an essential role for ADP-ribosylation factor 6 (ARF6) in cell surface remodeling in response to physiological stimulus and in the down regulation of stress fiber formation. We demonstrate that the G-protein-coupled receptor agonist bombesin triggers the redistribution of ARF6- and Rac1-containing endosomal vesicles to the cell surface. This membrane redistribution was accompanied by cortical actin rearrangements and was inhibited by dominant negative ARF6, implying that bombesin is a physiological trigger of ARF6 activation. Furthermore, these studies provide a new model for bombesin-induced Rac1 activation that involves ARF6-regulated endosomal recycling. The bombesin-elicited translocation of vesicular ARF6 was mimicked by activated Galphaq and was partially inhibited by expression of RGS2, which down regulates Gq function. This suggests that Gq functions as an upstream regulator of ARF6 activation. The ARF6-induced peripheral cytoskeletal rearrangements were accompanied by a depletion of stress fibers. Moreover, cells expressing activated ARF6 resisted the formation of stress fibers induced by lysophosphatidic acid. We show that the ARF6-dependent inhibition of stress fiber formation was due to an inhibition of RhoA activation and was overcome by expression of a constitutively active RhoA mutant. The latter observations demonstrate that activation of ARF6 down regulates Rho signaling. Our findings underscore the potential roles of ARF6, Rac1, and RhoA in the coordinated regulation of cytoskeletal remodeling.  相似文献   

7.
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.  相似文献   

8.
We have previously reported that EFA6, exchange factor for Arf6, is implicated upon E-cadherin engagement in the process of epithelial cell polarization. We had found that EFA6 acts through stabilization of the apical actin ring onto which the tight junction is anchored. Mutagenesis experiments showed that both the catalytic domain of EFA6 and its C-terminal domain were required for full EFA6 function. Here we address the contribution of the specific substrate of EFA6, the small G protein Arf6. Unexpectedly, depletion of Arf6 by RNA interference or expression of the constitutively active fast-cycling mutant (Arf6T157N) revealed that Arf6 plays an opposing role to EFA6 by destabilizing the apical actin cytoskeleton and the associated tight junction. However, in complementation experiments, when the C-terminal domain of EFA6 is co-expressed with Arf6T157N, it reverts the effects of Arf6T157N expressed alone to faithfully mimic the phenotypes induced by EFA6. In addition, we find that the two signaling pathways downstream of EFA6, i.e. the one originating from the activated Arf6GTP and the other one from the EFA6 C-terminal domain, need to be tightly balanced to promote the proper reorganization of the actin cytoskeleton. Altogether, our results indicate that to regulate the tight junction, EFA6 activates Arf6 through its Sec7 catalytic domain as it modulates this activity through its C-terminal domain.  相似文献   

9.
The membrane trafficking and actin cytoskeleton remodeling mediated by ADP ribosylation factor 6 (Arf6) are functionally linked to various neuronal processes including neurite formation and maintenance, neurotransmitter release, and receptor internalization. EFA6A is an Arf6‐specific guanine nucleotide exchange factor that is abundantly expressed in the brain. In this study, we identified sorting nexin‐1 (SNX1), a retromer component that is implicated in endosomal sorting and trafficking, as a novel interacting partner for EFA6A by yeast two‐hybrid screening. The interaction was mediated by the C‐terminal region of EFA6A and a BAR domain of SNX1, and further confirmed by pull‐down assay and immunoprecipitation from mouse brain lysates. In situ hybridization analysis demonstrated the widespread expression of SNX1 in the mouse brain, which overlapped with the expression of EFA6A in the forebrain. Immunofluorescent analysis revealed the partial colocalization of EFA6A and SNX1 in the dendritic fields of the hippocampus. Immunoelectron microscopic analysis revealed the overlapping subcellular localization of EFA6A and SNX1 at the post‐synaptic density and endosomes in dendritic spines. In Neuro‐2a neuroblastoma cells, expression of either EFA6A or SNX1 induced neurite outgrowth, which was further enhanced by co‐expression of EFA6A and SNX1. The present findings suggest a novel mechanism by which EFA6A regulates Arf6‐mediated neurite formation through the interaction with SNX1.

  相似文献   


10.
Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, β-catenin and α-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.  相似文献   

11.
Adherens junctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, beta-catenin and alpha-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1, -2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton.  相似文献   

12.
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.  相似文献   

13.
Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP2 and PIP3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.  相似文献   

14.
Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.  相似文献   

15.
Erythropoietin and stem cell factor are the key cytokines that regulate early stages of erythroid differentiation. However, it remains undetermined whether additional cytokines also play a role in the differentiation program. Here, we report that osteopontin (OPN) is highly expressed and secreted by erythroblasts during differentiation. We also demonstrate that OPN-deficient human and mouse erythroblasts exhibit defects in F-actin filaments, and addition of exogenous OPN to OPN-deficient erythroblasts restored the F-actin filaments in these cells. Furthermore, our studies demonstrate that OPN contributes to erythroblast proliferation. OPN knock-out male mice exhibit lower hematocrit and hemoglobin levels compared with their wild-type counterparts. We also show that OPN mediates phosphorylation or activation of multiple proteins including Rac-1 GTPase and the actin-binding protein, adducin, in human erythroblasts. In addition, we show that the OPN effects include regulation of intracellular calcium in human erythroblasts. Finally, we demonstrate that human erythroblasts express CD44 and integrins beta1 and alpha4, three known receptors for OPN, and that the integrin beta1 receptor is involved in transmitting the proliferative signal. Together these results provide evidence for signal transduction by OPN and contribution to multiple functions during the erythroid differentiation program in human and mouse.  相似文献   

16.
17.
We previously demonstrated that exogenous expression of a truncated form of the tight junction protein ZO-3 affected junctional complex assembly and function. Current results indicate that this ZO-3 construct influences actin cytoskeleton dynamics more globally. We show that expression of the amino-terminal half of ZO-3 (NZO-3) in Madin-Darby canine kidney cells results in a decreased number of stress fibers and focal adhesions and causes an increased rate of cell migration in a wound healing assay. We also demonstrate that RhoA activity is reduced in NZO-3-expressing cells. We determined that ZO-3 interacts with p120 catenin and AF-6, proteins localized to the junctional complex and implicated in signaling pathways important for cytoskeleton regulation and cell motility. We also provide evidence that NZO-3 interacts directly with the C terminus of ZO-3, and we propose a model where altered interactions between ZO-3 and p120 catenin in NZO-3-expressing cells affect RhoA GTPase activity. This study reveals a potential link between ZO-3 and RhoA-related signaling events.  相似文献   

18.
In inflammatory bowel diseases (IBD), intestinal barrier function is impaired as a result of deteriorations in epithelial tight junction (TJ) structure. IL-6, a pleiotropic cytokine, is elevated in IBD patients, although the role of IL-6 in barrier function remains unknown. We present evidence that IL-6 increases TJ permeability by stimulating the expression of channel-forming claudin-2, which is required for increased caudal-related homeobox (Cdx) 2 through the MEK/ERK and PI3K pathways in intestinal epithelial cells. IL-6 increases the cation-selective TJ permeability without any changes to uncharged dextran flux or cell viability in Caco-2 cells. IL-6 markedly induces claudin-2 expression, which is associated with increased TJ permeability. The colonic mucosa of mice injected with IL-6 also exhibits an increase in claudin-2 expression. The claudin-2 expression and TJ permeability induced by IL-6 are sensitive to the inhibition of gp130, MEK, and PI3K. Furthermore, expression of WT-MEK1 induces claudin-2 expression in Caco-2 cells. Claudin-2 promoter activity is increased by IL-6 in a MEK/ERK and PI3K-dependent manner, and deletion of Cdx binding sites in the promoter sequence results in a loss of IL-6-induced promoter activity. IL-6 increases Cdx2 protein expression, which is suppressed by the inhibition of MEK and PI3K. These observations may reveal an important mechanism by which IL-6 can undermine the integrity of the intestinal barrier.  相似文献   

19.
An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.  相似文献   

20.
Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号