首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fractional protein synthesis rate (FSR) of tissue (liver, digestive tract, muscle and whole fish) proteins was measured in rainbow trout acclimated to 9 and 18 degrees C after a pulse injection of [U-14C] L-leucine. In each of the tissues two FSRs were calculated based on a different estimate of the specific radioactivity of leucine in the precursor compartment for protein synthesis. Whole fish protein synthesis (WFPS) was estimated to be 7 and 7.6 g protein per kg body weight and per day respectively at 10 and 18 degrees C. Muscle and digestive tract contributed the most (more than 30%) to WFPS. The rate of protein turnover in whole fish was very low, as in the muscle, when compared to liver and digestive tract.  相似文献   

2.
We investigated whether the higher rate of amino acid incorporation into immature than into mature brain protein is due to (a) rapid growth, (b) a small rapidly metabolized protein pool, or (c) a higher turnover rate of most of the protein. We measured net growth and the incorporation of [14C]tyrosine or [14C]valine into brain proteins in young rats and mice. The specific activity of the free amino acid pool was kept constant in the tyrosine experiments. Incorporation of tyrosine into protein was continued for up to 30 h by which time the specific activity of protein-bound amino acid reached 1/3 of that of the free (precursor) amino acid. The growth (accretion) of brain proteins was approx. 0.635% per h in mice and rats in the 1-4 day period after birth. In previous studies we found that the turnover rate of the bulk (about 96%) of adult brain proteins is below 0.3% per h. Because of the presence of a small (about 4%) active pool the average turnover rate is 0.6% per h. The present experiments show a degradation rate of 0.7-1.1% per h in the brain proteins of the young. This high metabolic rate is not due to a small rapidly degraded fraction of protein. The very rapid protein fraction previously seen in adult rats is either very small (below 1%) or absent in the young. Thus most of the proteins in the immature brain during the rapid growth phase are formed and broken down at a rate that is approximately three times higher than that of the bulk of proteins in the adult brain. The small active protein pool in the adult on the other hand has a metabolic rate higher than that of the immature brain proteins.  相似文献   

3.
Abstract— Protein turnover in rat brain was measured over a period of 30 days by following the decay in specific radioactivity of acidic amino acids in proteins labelled by a single intraperitoneal injection of [14C]NaHCO3. Two major populations of brain proteins can be identified from the resultant non-linear decay curve—one with an average half-life of 4 days and another with an average half-life of 12 days. The half-lives of total brain, mitochondrial, microsomal and soluble proteins determined over a period of 5 days were 3.4, 5.8, 2.8, and 2.6 days, respectively. Turnover of these same brain subcellular fractions was also measured by continuous infusion of [14C]tyrosine. The estimated half-lives were in close agreement with those obtained from the 5 day measurement of radioactive decay following a pulse label of [14C]NaHCO3.  相似文献   

4.
Rates of protein synthesis in skeletal, cardiac and smooth muscle of fully grown fowl (Gallus domesticus) were determined in vivo by means of the constant infusion method using [14C]proline. In the anterior latissimus dorsi muscle, containing predominantly slow fibres, the average synthesis rate of non-collagen muscle proteins was 17.0 +/- 3.1% per day, a value higher than that obtained for cardiac muscle (13.8 +/- 1.3% per day) and for smooth muscle of the gizzard (12.0 +/- 1.9% per day). In the posterior latissimus dorsi muscle, containing predominantly fast fibres, synthesis rates were much lower (6.9 +/- 1.8% per day). In each case these average rates for the non-collagen protein were similar to the average rate for the sarcoplasmic and myofibrillar protein fractions. The RNA concentration of these four muscles showed that relative rates of protein synthesis were determined mainly by the relative RNA concentrations. The rate of protein synthesis per unit of DNA (the DNA activity) was similar in the two skeletal muscles, but somewhat lower in cardiac muscle and gizzard, possibly reflecting the larger proportion of less active cell types in these two muscles. These quantitative aspects of protein turnover in the two skeletal muscles are discussed in terms of the determination of ultimate size of the DNA unit, and in relation to muscle ultrastructure.  相似文献   

5.
In 23 patients, the decay curves of serum cholesterol specific activity after a single intravenous dose of radioactive cholesterol were measured for 16-66 wk and were subjected to computerized input-output analysis. Of 17 patients with decay curves followed for longer than 50 wk, a three-exponential curve fit was better in 12, and a two-exponential curve fit in 5, according to computerized F tests. Of six patients with decay curves followed for less than 50 wk, a two-exponential curve fit was better in five and a three-exponential curve fit in one. In the 13 patients who exhibited three-exponential curve fits, the third exponential appeared after 13-43 wk of observation (average, 25 wk). In 12 patients of this group who were followed for 50 wk or more, turnover rates and exchangeable masses of cholesterol were measured at maximum lengths of the curves (50-66 wk), and these parameters were then compared with measurements made with curves successively shortened down to 10-12 wk. The average differences between analyses of the minimum vs. the maximum lengths of the curves were: It (input rate: absorbed dietary plus biosynthesized cholesterol), 14% larger (1.24 vs. 1.09 g/day); M(a) (rapidly exchangeable mass of cholesterol), no change (34 vs. 33 g); M (total exchangeable mass), 26% smaller (67 vs. 91 g); M - M(a) (remaining exchangeable mass), 39% smaller (40 vs. 65 g). Significant differences in It, M, and M - M(a) (minimum vs. maximum curve lengths) were found in both normolipidemic and hypercholesterolemic patients, and the differences were of similar magnitude in the two groups. Since only 12 of 17 patients followed for 50 wk or longer demonstrated three-exponential curve fits, various means were sought by which it might be predicted at the outset whether a given patient must be studied for so long a time; none was found. However, in the group with two exponentials the value of M(a) was significantly larger than those with three-exponential curve fits, and this difference was apparent at as early as 10-12 wk.  相似文献   

6.
The rate of turnover of membrane proteins and membrane-bound carbohydrates in exponentially growing and in confluent contact-inhibited cultures of strain MK-2 cells was investigated. Cells were labelled with [14-C]leucine and [3-H]glucosamine, incubated in isotope-free medium and, at various times thereafter, the cells were harvested and membranes isolated from them. The rate of decay of the protein and carbohydrate components was determined from specific activity dilution of the labeled components in the isolated membranes. Although the rate of membrane synthesis is different in exponential and contact-inhibited cells, the rate of degradation (turnover) of membrane proteins and carbohydrates was found to be the same (25% per generation (42 h) or 0.6%/h).  相似文献   

7.
Measurement of protein turnover in rat brain   总被引:6,自引:3,他引:3  
Abstract— Degredation rates of rat brain proteins were measured by following the decay in specific radioactivity of carboxyl labelled aspartate and glutamate over a 17-day period. Initial labelling of these amino acids was achieved by a single intraperitoneal injection 0f NaH14CO3. The non-linear decay curve for total brain proteins could be approximated by assuming that the mixture contained two classes of proteins with half-lives of 3.3 and 8.7 days, respectively. Half-lives of 2.5 and 7.7 days were estimated for such protein classes in the microsomal fraction. The half-lives of soluble proteins, synaptic membranes, cell body and synaptic mitochondria were 3.1, 5.8, 5.6 and 8.4 days, respectively. Identical results were obtained if the change in specific activity of intact protein labeled by NaH14CO3 was followed. Two-fold slower decay rates were obtained when brain proteins were labeled with a pulse of [4,5-3H]leucine or [l-14C]leucine. Half-lives calculated for the two classes of proteins in whole brain were 8.4 and 16.5 days, respectively with [4,5-3H]leucine and 8.9 and 14.2 days, respectively with [1-14C]leucine. These results indicate the very significant reutilization of this amino acid in brain. Sodium [14C]bicarbonate is a more satisfactory isotopic precursor for accurate assessment of rates of protein turnover in brain.  相似文献   

8.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

9.
Intraperitoneal injection of [14C]tyrosine suspension followed by subcutaneous implantation of a [14C]tyrosine pellet in mice produced a fairly constant specific activity of plasma free tyrosine for 5 days, and for 3-5 days in the tissue free amino acid pool. The specific activity of tyrosine in the tissue (brain, liver, and kidney) free amino acid pool was 75-90% of that in plasma. Incorporation of tyrosine into tissue proteins was followed for 5 days in brain; during this time 33% of tissue proteins were labeled. Incorporation for 68 h in liver and kidney showed labeling of over 70% of the protein of these tissues. These percentages assume a homogeneous tissue free tyrosine pool as the precursor. The rate of incorporation initially was 0.6, 2.8, and 2.0% per h in brain, liver, and kidney protein, respectively. These rates decreased in longer term experiments. The best fit to the incorporation curves was obtained by assuming the following average half-lives for tissue proteins: brain, two compartments, 5.7% with a half-life of 15 h, 94.3% with a half-life of 10 days; liver, a single compartment with a 26-h half-life; kidney, two compartments, 41% with an 18-h half-life, and 59% with a 63-h half-life.  相似文献   

10.
The rate of turnover of membrane proteins and membrane-bound carbohydrates in exponentially growing and in confluent contact-inhibited cultures of strain MK-2 cells was investigated. Cells were labelled with [14C]leucine and [3H]glucosamine, incubated in isotope-free medium and, at various times thereafter, the cells were harvested and membranes isolated from them. The rate of decay of the protein and carbohydrate components was determined from specific activity dilution of the labeled components in the isolated membranes.Although the rate of membrane synthesis is different in exponential and contact-inhibited cells, the rate of degradation (turnover) of membrane proteins and carbohydrates was found to be the same (25%, per generation (42 h) or 0.6%/h).  相似文献   

11.
Protein turnover, defined as the degradation and replacement of proteins, appears to vary between most adult species in the same way as metabolic rate, i.e. as W0.75, although it may be a little lower in man. During development in the rat it also varies as metabolic rate. Thus P Total = 14.7 W0.53kg per day. Most of this turnover occurs in nonmuscle tissues (P = 11.3 W0.50kg per day) with protein turnover in muscle described by P = 3.53 W0.69kg per day. Mechanisms for protein degradation in liver and muscle involve lysosomes although the morphology of the lysosomal system in muscle is different from that in liver. However, heterogeneous turnover is a feature of proteins in both issues including the principal myofibrillar proteins. While the reaction order of protein synthesis can reasonably be described as zero order--a fixed rate per unit of DNA--there is less certainty about degradation. It is postulated that structural and functional characteristics of the cytoplasm of cells determine the accessibility of cellular protein to the degrading system. As a result, a first order rate for a particular cell type is fixed, and this determines the magnitude of the protein-DNA ratio or the functional-cell size. The first order degradation rate of the cytoplasmic protein also determines the specific activity of the degrading enzymes.  相似文献   

12.
The tissue origin of 3-methylhistidine (N tau-methylhistidine) was investigated in adult female rats. The decay of labelling of urinary 3-methylhistidine was compared with the labelling of protein-bound 3-methylhistidine in skeletal muscle and intestine after the injection of [methyl-14C]methionine. The decay curve for urinary 3-methylhistidine was much steeper than that in muscle or intestine, falling to values lower than those in either tissue after 30 days. The lack of decay of labelling in muscle during the first 30 days is shown to result from the persistence of label in the precursor S-adenosylmethionine. The relative labelling of urinary, skeletal-muscle and intestinal 3-methylhistidine cannot be explained in terms of skeletal muscle accounting for a major proportion of urinary 3-methylhistidine. Measurements were also made of the steady-state synthesis rate of protein-bound 3-methylhistidine in intestinal smooth muscle in vivo in adult female rats. This involved measurement of the overall rate of protein synthesis and measurement of the relative rates of synthesis of 3-methylhistidine and of mixed protein. The synthesis rate of 3-methylhistidine was 29.1%/day, compared with the overall rate of 77.1%/day for mixed, non-mucosal intestinal protein. Measurement of the amount of 3-methylhistidine in skeletal muscle (0.632 +/- 0.024 mumol/g) and in the whole body (0.332 +/- 0.013 mumol/g) indicate that, although the muscle pool is 86% of the total, because of its slow turnover rate of 1.1-1.6%/day, it only accounts for 38-52% of the observed excretion. Measurements of the mass of the intestine (9.95 g/250 g body wt.) and protein-bound 3-methylhistidine content (0.160 mumol/g of tissue) indicate a pool size of 1.59 mumol/250 micrograms rat. Thus 463 nmol of the urinary excretion/day would originate from the intestine, 22% of the total. The tissue source of the remaining urinary excretion is not identified, but other non-muscle sources constituting about 10% of the whole-body pool could account for this with turnover rates of only 6%/day, a much lower value than the turnover rate in the intestine.  相似文献   

13.
1. The double-isotope concept [Arias, Doyle & Schimke (1969) J. Biol. Chem. 224, 3303--3315] for the measurement of protein turnover was used to estimate the turnover of proteins in subcellular and submitochondrial fractions prepared from rat liver. 2. Double-isotope experiments with [3H]leucine as first precursor and [14C]leucine as second precursor were used to measure the turnover rates of proteins in subcellular and submitochondrial fractions. Solvent extraction procedures designed to remove lipids and nucleic acids from trichloroacetic acid precipitates only changed the isotope ratio of the microsomal fraction. It was not possible to measure turnover of proteins in mitochondrial and submitochondrial fractions with these precursors. 3. Double-isotope experiments were designed to minimize first-precursor reutilization by employing NaH14CO3. [3H]Arginine was used as second precursor. The turnover rates of protein in subcellular and submitochondrial fractions was measured. Solvent extraction procedures designed to remove lipids and nucleic acids showed changes in the isotope ratio for all subcellular fractions, especially in microsomal and detergent-soluble mitochondrial fractions. Isotope ratios of precipitates after solvent extraction indicate that, whereas considerable heterogeneity exists for the average rates of protein turnover in subcellular fractions, little heterogeneity is observed in the average rates of protein turnover in submitochondrial fractions.  相似文献   

14.
A study was undertaken to determine the long-term effects of a hot environment on protein turnover in skeletal and cardiac muscles of young homeothermic animals. Three groups of 36 male 28 day old rats were housed at 35 degrees C (hot group), 25 degrees C (control group), or 25 degrees C but pair-fed to the intake of the hot group (pair-fed group). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. By day 20, soleus and gastrocnemius (skeletal muscle) protein masses were 7 and 14% lower in the hot group and 31 and 21% lower in the pair-fed group compared with the control group (P < 0.05). The fractional rate of protein synthesis (k(syn)) was on average 11% lower (P < 0.05) in the hot group compared with control rats and was not different from pair-fed rats. The fractional rate of skeletal muscle protein degradation (k(deg)) in hot rats was slightly lower than in control rats; k(deg) was on average 18% higher (P < 0.05) in the pair-fed group compared with the hot group and this difference appeared to be most prominent on day 5. In heart, by day 20, protein mass was 30% lower in the hot group and 40% lower in the pair-fed group compared with control rats (P < 0.05). k(syn) was on average 19% lower (P < 0.05) in the hot group compared with the control group, but not different from pair-fed rats. In the heart there were no differences in k(deg) among treatments. Plasma triiodothyronine (T3) concentration was lower in the hot group, but not in the pair-fed group, compared with controls. In conclusion, chronic exposure to hot environments was associated with lower skeletal and cardiac muscle mass and protein turnover; lower protein mass in this tissue was due to decreased k(syn); this is consistent with lower plasma T3 concentrations. In pair-fed rats, k(syn) was also reduced, but interestingly k(deg) was not, resulting in a greater loss of skeletal muscle mass. These results suggest that heat exposure invokes physiological adaptations to preserve skeletal muscle mass despite decreased food intake. In the heart, loss of protein was a result of decreased k(syn), which can be primarily ascribed to lower food intake.  相似文献   

15.
The significance of changes in rates of synthesis, export, and degradation of proteins during liver regeneration was assessed. (a) Proteins were pulse labeled by the intravenous injection of radioactive leucine and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis). One-half of the protein radioactivity was lost from the normal liver within 3 hours. From the radioactivity of the plasma proteins at that time and a study of the disappearance of these proteins from the circulation, it was calculated that 28% of the newly synthesized proteins were exported. Serum albumin accounted for a third of the exported proteins. Thirty-six hours after partial hepatectomy the proportion of albumin to total protein synthesis remained constant, while that of the other plasma proteins increased by 50%. The fraction of the newly synthesized proteins retained by the liver after 3 hours decreased by 20%. (b) During the first 36 hours of liver regeneration the average rates of protein degradation slowed down to one-half the normal values. This was determined either by the loss of radioactivity from total protein (or the guanidino-C of protein-bound arginine) in livers labeled with [14C]bicarbonate, or calculated as the balance between protein synthesis and net protein gain. (c) From these results, and those of our previous study of the protein synthetic machinery of normal and regenerating livers (Scornik, O.A. (1974)J. Biol. Chem. 249, 3876-3883), we conclude that changes in the rate of protein degradation are the single most important factor determining the increase in protein content during liver compensatory growth.  相似文献   

16.
The rates of cell proliferation, total protein and heat shock protein turnover, and thermotolerance decay were determined in exponential-phase CHO cells. Following a mild heat treatment of 44 degrees C for 10 min, the rate of total protein turnover slightly exceeded the rate of cell proliferation. Heated cells doubled approximately every 16 h and labeled total protein turned over with a half-time of 14 h. The turnover rate of heat shock proteins (10-h half-time) somewhat exceeded the total protein turnover rate and was similar to the thermotolerance decay rate. These data indicate that the turnover of total and heat shock proteins and thermotolerance occurs as a result of both cell division-dependent and division-independent processes.  相似文献   

17.
Kagawa T  Wong JH 《Plant physiology》1985,77(2):266-274
The allocation and turnover of photosynthetically assimilated 14CO2 in lipid and protein fractions of soybean (Glycine max L. Clark) leaves and stem materials was measured. In whole plant labeling experiments, allocation of photosynthate from a pulse of 14CO2 into polymeric compounds was: 25% to proteins in 4 days, 20% to metabolically inert cell wall products in 1 to 2 days, 10% to lipids in 4 days, and 4% to starch in 1 day. The amount of 14C labeled photosynthate that an actively growing leaf (leaf 4) used for its own lipid synthesis immediately following pulse labeling was about 25%. The 14C of labeled proteins turned over with half-lives of 3.8, 3.3, and 4.1 days in leaves 1, 2, and 3, respectively; and turnover of 14C in total shoot protein proceeded with a half-life of 5.2 days. Three kinetic 14C turnover patterns were observed in lipids: a rapid turnover fraction (within a day), an intermediate fraction (half-life about 5 days), and a slow turnover fraction. These results are discussed in terms of previously published accounts of translocation, carbon budgets, carbon use, and turnover in starch, lipid, protein, and cell wall materials of various plants including soybeans.  相似文献   

18.
Synthesis and Turnover of Cytoskeletal Proteins in Cultured Astrocytes   总被引:17,自引:10,他引:7  
Abstract: We previously reported that the cytoskeleton of rat astrocytes in primary culture contains vimentin, glial fibrillary acidic protein (GFAP), and actin. These proteins were found in a fraction insoluble in Triton X-100 and thought to be assembled in filamentous structures. We now used primary astrocyte cultures to study the kinetics of synthesis and turnover of these cytoskeletal proteins. The intermediate filament proteins were among the most actively synthesized by astrocytes. High levels of synthesis were detectable by the third day of culture in the early log phase of growth, and the pattern of labeling at day 3 was similar to that at 14 days when the cultures had reached confluency. In short-term incorporation experiments vimentin, GFAP, and actin in the Triton-insoluble fraction were labeled within 5 min after exposure of the cultures to radioactive leucine. We did not detect any saturation of labeling for up to 6 h of incubation. The turnover of filament proteins studied by following the decay of radioactivity from prelabeled vimentin, GFAP, and cytoskeletal actin displayed biphasic decay kinetics for all three proteins. In the initial phase a fast-decaying pool with a half-life of 12–18 h contributed about 40% of the total activity in each protein. A major portion, about 60%, of each protein, however, decayed much more slowly, exhibiting a half-life of about 8 days.  相似文献   

19.
Changes in the growth and protein turnover (measured in vivo) of the rat liver, kidney and whole body were studied between 16 days of life in utero and 105 weeks post partum. Tissue and whole-body growth were related to changes in both cellular hyperplasia (i.e. changes in DNA) and hypertrophy (protein/DNA values) and to the protein composition within the enlarging tissue mass. The suitability of using a single large dose of phenylalanine for measuring the rates of protein synthesis during both pre- and post-natal life was established. The declining growth rates in the whole animal and the two visceral tissues were then explained by developmental changes in the fractional rates of protein synthesis and breakdown, turnover rates being age-for-age higher in the liver than in the kidney, which in turn were higher than those measured in the whole animal. The declining fractional rates of synthesis in both tissues and the whole body with increasing age were related to changes in the tissues' ribosomal capacity and activity. The fall in the hepatic rate between 18 and 20 days of foetal life (from 134 to 98% per day) corresponded to a decrease in both the ribosomal capacity and the rate of synthesis per ribosome. No significant changes in any of these parameters were, however, found in the liver between weaning (3 weeks) and senility (105 weeks). In contrast, the fractional synthetic (and degradative) rates progressively declined in the kidney (from 95 to 24% per day) and whole body (from 70 to 11% per day) throughout both pre- and post-natal life, mainly as a consequence of a progressive decline in the ribosomal capacity, but with some fall in the ribosomal activity also during foetal life. The age-related contributions of these visceral tissues to the total amount of protein synthesized per day by the whole animal were determined. The renal contribution remained fairly constant at 1.6-2.9%, whereas the hepatic contribution declined from 56 to 11%, with increasing age. Approximate-steady-state conditions were reached at, and between, 44 and 105 weeks post partum, the half-life values of mixed whole-body, kidney and liver proteins being 6.4, 3.0 and 1.5 days, respectively, at 105 weeks.  相似文献   

20.
The rate of epidermal protein synthesis in vivo was determined in the hairless mouse by a method in which a large dose of [3H]phenylalanine (150 mumol/100 g body wt.) is administered via the tail vein. The epidermal free phenylalanine specific radioactivity rapidly rose to a plateau value which by 10 min approached that of plasma, after which it declined. This dose of phenylalanine did not of itself alter protein synthesis rates, since incorporation of co-injected tracer doses of [3H]lysine and [14C]threonine was unaffected. The fractional rate of protein synthesis obtained for epidermis was 61.6%/day, whereas values for liver and gastrocnemius muscle in the same group of mice were 44%/day and 4.8%/day respectively. When expressed on the basis of RNA content, the value for epidermis (18.6 mg of protein/day per mg of RNA) was approx. 3-fold higher than those for liver and gastrocnemius muscle. Topical administration of 0.1% triamcinolone acetonide increased the epidermal fractional protein synthesis rate by 33% after 1 day and by 69% after 7 days, compared with vehicle-treated controls. These effects were entirely accounted for by the increase in protein synthesis rates per mg of RNA. RNA/protein ratios were unaffected by this treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号