首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Lipid production of the oleaginous yeastApiotrichum curvatum was studied in wheypermeate to determine optimum operation conditions in this medium. Studies on the influence of the carbon to nitrogen ratio (C/N-ratio) of the growth medium on lipid production in continuous cultures demonstrated that cellular lipid content in wheypermeate remained constant at 22% of the cell dry weight up to a C/N-ratio of about 25. The maximal dilution rate at which all lactose is consumed in wheypermeate with excess nitrogen was found to be 0.073 h-1. At C/N-ratios higher than 25–30 lipid content gradually increased to nearly 50% at C/N=70 and the maximal obtainable dilution rate decreased to 0.02 h-1 at C/N=70. From these studies it could be derived that maximal lipid production rates can be obtained at C/N-ratios of 30–35 in wheypermeate. Since the C/N-ratio of wheypermeate normally has a value between 70 and 101, some additional nitrogen is required to optimize the lipid production rate. Lipid production rates ofA. curvatum in wheypermeate were compared in four different culture modes: batch, fed-batch, continuous and partial recycling cultures. Highest lipid production rates were achieved in culture modes with high cell densities. A lipid production rate of nearly 1 g/l/h was reached in a partial recycling culture. It was calculated that by using this cultivation technique lipid production rates of even 2.9 g/l/h may be reached when the supply of oxygen can be optimized.Nomenclature C/N-ratio carbon to nitrogen ratio of the growth medium (g/g) - C/Ncrit C/N-ratio at which there is just enough nitrogen to allow all carbon source to be converted to biomass - D dilution rate=volume of incoming medium per unit time/volume of medium in the culture vessel (h-1) - Dmax maximum dilution rate (h-1) - DW cell dry weight - L lipid yield (g storage lipid/g carbon source) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - QL lipid production rate (g/l/h) - Yi molecular fraction of carbon substrate that is converted to storage carbohydrate (C-mol/C-mol) - Yls maximal amount of storage lipid that can be produced per mol carbon source (C-mol/C-mol)  相似文献   

2.
The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This model describes three subsequent phases: exponential growth when both a C-source and an N-source are available, carbohydrate and lipid production when the N-source is exhausted and turnover of accumulated lipids when the C-source is exhausted. The model was validated with submerged batch cultures of the fungus Umbelopsis isabellina (formerly known as Mortierella isabellina) with two different initial C/N-ratios. Comparison with chemostat cultures with the same strain showed a significant difference in lipid production: in batch cultures, the initial specific lipid production rate was almost four times higher than in chemostat cultures but it decreased exponentially in time, while the maximum specific lipid production rate in chemostat cultures was independent of residence time. This indicates that different mechanisms for lipid production are active in batch and chemostat cultures. The model could also describe data for submerged batch cultures from literature well.  相似文献   

3.
Lipid-accumulating fungi may be able to produce biodiesel precursors from agricultural wastes. As a first step in understanding and evaluating their potential, a mathematical model was developed to describe growth, lipid accumulation and substrate consumption of the oleaginous fungus Umbelopsis isabellina (also known as Mortierella isabellina) in submerged chemostat cultures. Key points of the model are: (1) if the C-source supply rate is limited, maintenance has a higher priority than growth, which has a higher priority than lipid production; (2) the maximum specific lipid production rate of the fungus is independent of the actual specific growth rate. Model parameters were obtained from chemostat cultures of U. isabellina grown on mineral media with glucose and NH4 +. The model describes the results of chemostat cultures well for D > 0.04 h−1, but it has not been validated for lower dilution rates because of practical problems with the filamentous fungus. Further validation using literature data for oleaginous yeasts is described in part II of this paper. Our model shows that not only the C/N-ratio of the feed, but also the dilution rate highly influences the lipid yield in chemostat cultures.  相似文献   

4.

Background

Oleaginous microorganisms, such as bacterium, yeast and algal species, can represent an alternative oil source for biodiesel production. The composition of their accumulated lipid is similar to the lipid of an oleaginous plant with a predominance of unsaturated fatty acid. Moreover this alternative to conventional biodiesel production does not create competition for land use between food and oleo-chemical industry supplies. Despite this promising potential, development of microbial production processes are at an early stage. Nutritional limited conditions, such as nitrogen limitation, with an excess of carbon substrate is commonly used to induce lipid accumulation metabolism. Nitrogen limitation implies modification of the carbon-to-nitrogen ratio in culture medium, which impacts on carbon flow distribution in the metabolic network.

Results

The goal of the present study is to improve our knowledge of carbon flow distribution in oleaginous yeast metabolism by focusing carbon distribution between carbohydrate and lipid pools in order to optimize microbial lipid production. The dynamic effects of limiting nitrogen consumption flux according to carbon flow were studied to trigger lipid accumulation in the oleaginous yeast Rhodotorula glutinis. With a decrease of the specific nitrogen consumption rate from 0.052 Nmol.CmolX?1.h?1 to 0.003 Nmol.CmolX?1.h?1, a short and transitory intracellular carbohydrate accumulation occurred before the lipid accumulation phase. This phenomenon was studied in fed-batch culture under optimal operating conditions, with a mineral medium and using glucose as carbon source. Two different strategies of decreasing nitrogen flow on carbohydrate accumulation were investigated: an instantaneous decrease and a progressive decrease of nitrogen flow.

Conclusions

Lipid production performance in these fed-batch culture strategies with R. glutinis were higher than those reported in the previous literature; the catalytic specific lipid production rate was 0.07 Cmollip.CmolX*?1.h?1. Experimental results suggested that carbohydrate accumulation was an intrinsic phenomenon connected to the limitation of growth by nitrogen when the nitrogen-to-carbon ratio in the feed flow was lower than 0.045 Nmol.Cmol?1. Carbohydrate accumulation corresponded to a 440% increase of carbohydrate content. These results suggest that microbial lipid production can be optimized by culture strategy and that carbohydrate accumulation must be taken account for process design.
  相似文献   

5.
Due to the increasing demand for sustainable biofuels, microbial oils as feedstock for the transesterification into biodiesel have gained scientific and commercial interest. Also, microbial carotenoids have a considerable market potential as natural colorants. The carbon to nitrogen (C/N) ratio of the respective cultivation media is one of the most important parameters that influence the production of microbial lipids and carotenoids. Thus, in the present experiment, the influence of different C/N ratios, initial glucose loadings, and ammonium concentrations of the cultivation medium on microbial cell growth and lipid and carotenoid production by the oleaginous red yeast Rhodotorula glutinis has been assessed. As a general trend, both lipid and carotenoid production increased at high C/N ratios. It was shown that not only the final C/N ratio but also the respectively applied initial carbon and nitrogen contents influenced the observed parameters. The lipid yield was not affected by different ammonium contents, while the carotenoid production significantly decreased both at low and high levels of ammonium supply. A glucose-based increase from C/N 70 to 120 did not lead to an increased lipid production, while carotenoid synthesis was positively affected. Generally, it can be asserted that lipid and carotenoid synthesis are stimulated at higher C/N ratios.  相似文献   

6.
Measurements of the deposition rates of atmospheric trace constituents to forest ecosystems in Austria have shown that the deposition of plant utilizable nitrogen compounds is in the range from 12 kg N to more than 30 kg N ha-1 a-1. Locally, even higher deposition rates are encountered as a consequence of point sources or special deposition mechanisms such as fog interception, hoar frost formation, and accumulation in snow drifts. In order to place these values into perspective, they are compared with the nitrogen demand of past and present forest land use and with natural processes of nitrogen depletion and accumulation in forest ecosystems. During wind erosion of forest litter, woody material with a wide C/N-ratio remains on the windward side of ridges, while nutrient-rich material with a narrow C/N-ratio is deposited on the leeward side. As a result, total nitrogen storage in the forest soil as well as overall C/N-ratios change dramatically along a transect over a ridge, thus indicating a strong influence of litter C/N ratio on nitrogen retention in the forest soil. A study of nitrogen stores in the soil of beech ecosystems of the same yield class in the Vienna Woods showed a significant correlation of total N-content with base saturation. These results suggest that nitrogen storage capacity of forest soils may be managed by liming and tree species selection. As knowledge is still meagre, a special study on factors which determine nitrogen storage in forest soils is proposed within the FERN-programme.  相似文献   

7.
Recently, there has been a great upsurge of interest in studies related to several aspects of microbial lipid production, which is one of the top topics in relevant research fields due to the high demand of these fatty materials in food, medical, oleochemical and biofuel industries. Lipid accumulation by the so-called “oleaginous microorganisms” can generate more than 20% w/w of oil in dry biomass and is governed by a plethora of parameters, such as medium pH, incubation temperature, nutrient limitation and C/N (carbon/nitrogen) ratio, which drastically affect the lipid production bioprocess. Until now, considerable work has been undertaken to find the cheapest substrate to enable lipid fermentation by oleaginous microorganisms. This review principally details information regarding microbial lipids, suitable production conditions and focuses attention on using the yeast Yarrowia lipolytica to achieve these objectives. Lipid production by this yeast is discussed and the necessary conditions and suitable substrates are reviewed.  相似文献   

8.
Yarrowia lipolytica is an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study used Y. lipolytica as a host organism for the production of TAL via expression of the 2‐pyrone synthase gene from Gerbera hybrida. Induction of lipid biosynthesis by nitrogen‐limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut‐and‐paste transposon to mobilize and integrate multiple copies of the 2‐pyrone synthase gene. Strain modifications and batch fermentation in nitrogen‐limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.  相似文献   

9.
Apiotrichum curvatum ATCC 20509, an oleaginous yeast that can accumulate up to 60% of its cellular dry weight as intracellular lipid when grown with excess carbon, was grown in nitrogen-limited, balanced, and lactose-free medium with asparagine as nitrogen source and lactose as carbon source. Biomass and lipid accumulation were measured, cell composition was analyzed, and catalase activity was followed as marker enzyme for peroxisomes. The organism accumulated 54% of its dry weight as total cellular lipid when grown under nitrogen limitation and accumulated only 20-25% of its dry weight as lipid when grown in balanced medium. When starved for carbon, cells utilized endogenous lipid and carbohydrate as carbon and energy sources; the intracellular contents of lipid and carbohydrate decreased by 31 and 26%, respectively. Intracellular carbohydrates also seemed to be used as intermediates for lipid accumulation and lipid turnover. Catalase activity was strongly induced (over 10-fold increase in specific activity) when cells metabolized endogenous lipid. The lipid content of cells was inversely related to catalase activity and to intracellular protein or total nitrogen content. Lipid content showed no correlation with intracellular carbohydrate content.  相似文献   

10.
An oleaginous fungus, Mortierella isabellina, able to transform efficiently sugar to storage lipid, was used as a model microorganism which develops a biofilm structure during the semi-solid fermentation process for the production of biodiesel from sweet sorghum. A mathematical model was developed to describe the fungal oil production in M. isabellina biofilm. The model describes diffusion and consumption of sugars and nitrogen of sweet sorghum and single cell oil production in a biofilm, which grows according to the kinetics of double-substrate limitation (sugars and nitrogen) with sugar inhibition. Experimental data from a previous experimental study were used to determine the kinetic parameters of the model. Maximum biofilm thickness and the percentage of lipid inside the biofilm were estimated using the model at 1892 μm and 15%, respectively. The proposed mathematical model could prove a useful tool for designing semi-solid fermentation processes.  相似文献   

11.
Wu S  Zhao X  Shen H  Wang Q  Zhao ZK 《Bioresource technology》2011,102(2):1803-1807
Novel biochemical approaches remain to be developed to improve microbial lipid technology. This study demonstrated that sulfate limitation was effective to promote accumulating substantial amounts of intracellular lipid by the oleaginous yeast Rhodosporidium toruloides Y4. When it was cultivated using a medium with an initial carbon-to-sulfur (C/S) molar ratio of 46,750, cellular lipid content reached up to 58.3%. The time courses of cell growth, lipid accumulation and nutrient depletion were analyzed and discussed in terms of lipid biosynthesis. Moreover, lipid accumulation under sulfate-limited conditions was effective regardless of the presence of a high concentration of nitrogen sources. Thus, lipid contents almost held constant at near 57% in the media with an initial C/S molar ratio of 11,380 although the carbon-to-nitrogen molar ratio ranged from 28.3 to 5.7. Taken together, our results established the sulfate-limitation approach to control lipid biosynthesis, which should be valuable to explore nitrogen-rich raw materials as the feedstock for lipid production.  相似文献   

12.

Lipid production by the red yeast Rhodosporidium toruloides was explored under nutrient limitation. To determine the compositional profiles of R. toruloides cells, samples were prepared using a continuous cultivation process under nutrient limitation and analyzed via several methods, including Fourier transform infrared spectroscopy and elemental analysis. Under nitrogen limitation, as the dilution rate increased, the cellular lipid content decreased but the carbohydrate and protein contents increased. Under carbon limitation, the cellular lipid, protein, and carbohydrate contents remained relatively constant at the different dilution rates. Moreover, the cellular elemental composition was essentially identical under nitrogen and carbon limitation at a high dilution rate of 0.20 h−1. We also analyzed the consumed carbon to nitrogen (C/N) under different nutrition conditions. The results indicated that the consumed C/N had a major influence on cell metabolism and product formation, which contributed to our understanding of the physiological characteristics of R. toruloides.

  相似文献   

13.
采用新型常压室温等离子体射流诱变产油酵母,结合快速突变产油酵母操作条件及基于96孔板的高通量筛选手段,获得了一系列增殖速度和产油量发生变化的突变株。在等离子体对菌株致死率为99%的条件下获得的以突变株增殖速度为指标的正突变率达到27.2%。用含酵母粉 (10 g/L)、蛋白胨 (10 g/L) 及葡萄糖 (20 g/L) 的酵母膏胨葡萄糖培养基进行发酵实验表明,筛选得到的高产突变体产油量从对照株的1.87% (W/W) 增加到4.07% (W/W)。  相似文献   

14.
15.
AIMS: To study patterns of reserve lipid biosynthesis and turnover (degradation) in two oleaginous Zygomycetes, namely Cunninghamella echinulata and Mortierella isabellina under various growth conditions. Fatty acid composition of the reserve lipid of both strains was also studied in all growth steps. METHODS AND RESULTS: Cunninghamella echinulata and Mortierella isabellina were grown in carbon-excess batch cultures. In the investigated strains, accumulation of reserve lipid occurred only when the activity of both NAD(+)-isocitrate dehydrogenase (ICDH) and NADP(+)-ICDH were not detectable in the cell-free extract. Specifically, in C. echinulata, NAD(+)-ICDH activity was detected even after depletion of ammonium nitrogen in the medium, resulting in a delay of the initiation of lipid accumulation period. On the contrary, in M. isabellina, lipid accumulation occurred simultaneously with ammonium nitrogen exhaustion in the growth medium, as the activity of both NAD(+)- and NADP(+)-ICDH were not detectable after nitrogen depletion. In C. echinulata reserve lipid was not degraded after glucose had been exhausted. Supplementations of the medium with Fe(3+), yeast extract or Mg(2+) induced, however, reserve lipid breakdown and formation of lipid-free material. In M. isabellina after glucose exhaustion, notable lipid degradation occurred, accompanied by a significant lipid-free material biosynthesis. Nevertheless, in multiple-limited media, in which Mg(2+) or yeast extract, besides carbon and nitrogen, were limiting nutrients, reserve lipid breakdown was repressed. In both strains, the quantity of gamma-linolenic acid (GLA) in the reserve lipids [varying between 9 and 16% (w/w) in C. echinulata and 1.5-4.5% (w/w) in M. isabellina] was proportional to lipid-free biomass. CONCLUSIONS: Lipid accumulation period in Zygomycetes is initiated by the attenuation of ICDH activity in the mycelium while the regulation of ICDH from ammonium nitrogen is strain specific. While a single nitrogen limitation was enough to induce lipid accumulation, however, multiple limitations were needed in order to repress lipid turnover in oleaginous Zygomycetes. As for GLA, its biosynthesis in the mycelium seemed proportional to lipid-free biomass synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: Several nutrients are indispensable for functioning the mechanisms involved in the mobilization of reserve lipid in oleaginous moulds. Therefore, reserve lipid turnover in oleaginous moulds could be repressed in multiple-limited media.  相似文献   

16.
Sweet sorghum extract was used as substrate for lipid accumulation by the oleaginous fungus Mortierella isabellina in batch cultures. Various initial sugar (13–91 g/L) and nitrogen (100–785 mg/L) concentrations resulting in various C/N (43–53) ratios were tested. Oil accumulation ranged between 43% and 51% corresponding to oil production from 2.2 to 9.3 g/L. A detailed mathematical model was developed. This model is able to adequately predict biomass growth, lipid accumulation, and sugar and nitrogen consumption. The model assumes that fungus growth is inhibited at high sugar concentrations. A set of kinetic experiments was used for model kinetic parameters estimation, while another set of experiments was used for model validation. The developed model could be generalized for similar systems of lipid accumulation and become a useful tool for reactor design for biofuel production. Bioeng. 2011; 108:1049–1055. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
18.
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39?±?0.19 g/l), followed by peptone (2.24?±?0.05 g/l), while the highest content of microbial oil (0.35?±?0.01 g/l) and the maximum lipid yield (15.63 %) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23 %), followed by linoleic (>15.79 %) and palmitic acids (>13.47 %). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.  相似文献   

19.
Microbial lipids produced by oleaginous microorganisms, also called microbial oils and single cell oils (SCOs), are very promising sources for several oil industries. The exploration of efficient oleaginous yeast strains, meant to produce both high-quantity and high-quality lipids for the production of biodiesel, oleochemicals, and the other high value lipid products, have gained much attention. At present, the number of oleaginous yeast species that have been discovered is 8.2% of the total number of known yeast species, most of which have been isolated from their natural habitats. To explore high lipid producing yeasts, different methods, including high-throughput screening methods using colorimetric or fluorometric measures, have been developed. Understanding of the fatty acid composition profiles of lipids produced by oleaginous yeasts would help to define target lipid-related products. For lipid production, the employment of low-cost substrates suitable for yeast growth and lipid accumulation, and efficient cultivation processes are key factors for successfully increasing the amount of the accumulated lipid yield while decreasing the cost of production.  相似文献   

20.
Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号