首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New series of escape mutants of human respiratory syncytial virus were prepared with monoclonal antibodies specific for the fusion (F) protein. Sequence changes selected in the escape mutants identified two new antigenic sites (V and VI) recognized by neutralizing antibodies and a group-specific site (I) in the F1 chain of the F molecule. The new epitopes, and previously identified antigenic sites, were incorporated into a refined prediction of secondary-structure motifs to generate a detailed antigenic map of the F glycoprotein.  相似文献   

2.
A maximum-likelihood analysis of selection pressures acting on the attachment (G) glycoprotein gene of respiratory syncytial virus (RSV) from humans (HRSV) and bovines (BRSV) is presented. Six positively selected sites were identified in both group A and group B of HRSV, although only one site was common between them, while no positively selected sites were detected in BRSV. All positively selected sites were located within the ectodomain of the G protein and showed some association with positions of immunoglobulin (Ig) epitopes and sites of O-glycosylation. These results suggest that immune (antibody)-driven natural selection is an important determinant of RSV evolution and that this selection pressure differs among strains. The passage histories of RSV strains were also shown to affect the distribution of positively selected sites, particularly in HRSV B, and should be considered whenever retrospective analysis of adaptive evolution is undertaken. Received: 15 August 2000 / Accepted: 2 November 2000  相似文献   

3.
4.
A recombinant fusion protein (BBG2Na) comprising the central conserved domain of the respiratory syncytial virus subgroup A (RSV-A) (Long) G protein (residues 130 to 230) and an albumin binding domain of streptococcal protein G was shown previously to protect mouse upper (URT) and lower (LRT) respiratory tracts against intranasal RSV challenge (U. F. Power, H. Plotnicky-Gilquin, T. Huss, A. Robert, M. Trudel, S. Stahl, M. Uhlén, T. N. Nguyen, and H. Binz, Virology 230:155-166, 1997). Panels of monoclonal antibodies (MAbs) and synthetic peptides were generated to facilitate dissection of the structural elements of this domain implicated in protective efficacy. All MAbs recognized native RSV-A antigens, and five linear B-cell epitopes were identified; these mapped to residues 152 to 163, 165 to 172, 171 to 187 (two overlapping epitopes), and 196 to 204, thereby covering the highly conserved cysteine noose domain. Antibody passive-transfer and peptide immunization studies revealed that all epitopes were implicated in protection of the LRT, but not likely the URT, against RSV-A challenge. Pepscan analyses of anti-RSV-A and anti-BBG2Na murine polyclonal sera revealed lower-level epitope usage within the central conserved region in the former, suggesting diminished immunogenicity of the implicated epitopes in the context of the whole virus. However, Pepscan analyses of RSV-seropositive human sera revealed that all of the murine B-cell protective epitopes (protectopes) that mapped to the central conserved domain were recognized in man. Should these murine protectopes also be implicated in human LRT protection, their clustering around the highly conserved cysteine noose region will have important implications for the development of RSV vaccines.  相似文献   

5.
6.
目的:获得能稳定分泌抗人呼吸道合胞病毒(human respiratory syncytial virus, RSV)融合糖蛋白(fusion glycoprotein, F)单克隆抗体(monoclonal antibody, mAb)的杂交瘤细胞株,以期用于RSV感染的早期诊断和被动免疫治疗研究。方法:通过杂交瘤技术制备可特异性识别RSV F的单抗,体外鉴定生物学特性。结果:获得了可分泌抗RSV F蛋白的杂交瘤细胞株F8,体外连续传代培养2个月,能稳定分泌抗体F8,培养上清效价为1∶1000,亲和常数(Ka)为6.8×108 L/mol。F8属IgG1型抗体,可特异性识别RSV F1亚单位的AA 205-222。免疫酶法蚀斑减少中和实验证实F8具有体外中和活性及融合抑制活性。结论:获得具有中和活性的抗RSV F蛋白的单克隆抗体,为RSV感染的早期诊断及被动免疫治疗等奠定了基础。  相似文献   

7.
8.
Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.  相似文献   

9.
人呼吸道合胞病毒活疫苗研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
人呼吸道合胞病毒是引起婴幼儿支气管炎和肺炎的主要原因,也可导致免疫缺陷病人及老年人群显著发病和死亡.人呼吸道合胞病毒疫苗已被世界卫生组织(World Health Organization,WHO)列为全球最优先发展的疫苗之一.经过50多年的研究,尤其是随着重组技术和反向遗传学的出现,对RSV疫苗的研究取得了重要进展,...  相似文献   

10.
The complete genome sequence of human respiratory syncytial virus genotype A (HRSV-A) with a 72-nucleotide duplication in the C-terminal part of the attachment protein G gene was determined and analyzed. The genome was 15,277 bp in length, and 0.46 to 6.03% variations were identified at the nucleotide level compared with the previously reported complete genome of HRSV-A. Characterization of the genome will improve understanding of the diversity of the HRSV-A major antigens and enable an in-depth analysis of its genetics.  相似文献   

11.
Intrapatient variability of the attachment (G) protein gene of respiratory syncytial virus (RSV) was examined using both population and single-genome sequencing. Samples from three patients infected with a group B virus variant which has a 60-nucleotide duplication in the G protein gene were examined. These samples were chosen because occasional mixed sequence bases were observed. In a minority of RSV genomes from these patients considerable variability was found, including point mutations, insertions, and deletions. Of particular note, the deletion of the exact portion of the gene which had been duplicated in some isolates was observed in viral RNAs from two patients.Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in infants and vulnerable adults (3, 9) and is unusual in that it can repeatedly reinfect individuals (5, 6). RSV isolates are classified into two groups, A and B, and the attachment (G) protein, a target for neutralizing antibodies, is the most variable of the viral proteins, showing considerable genetic and antigenic variability both within and between the groups (7, 8). The G protein is able to accommodate drastic changes, which have been observed both in culture during the selection of monoclonal antibody escape mutants (4, 12, 13) and in vivo with the emergence of new variants, including a group B strain with a duplication of 60 nucleotides (17). This strain with a 60-nucleotide duplication was first reported from Buenos Aires in 1999 (17) and then was subsequently detected in samples from 1998 in Madrid (16). The strain then became the dominant group B strain worldwide, indicating a selective advantage for this variant (16, 18). Thus, major genetic changes can be introduced into the G gene sequence while the virus replicates in its natural host, which can then be selected under favorable epidemiological conditions.Previous investigations of the genetic diversity of RSV exploited direct sequencing of PCR-amplified products (2), which represent the population average of the in vivo variants. Such sequences are derived from multiple copies of cDNA and represent the dominant sequence, and they thus do not allow detection of minority populations below about 20% prevalence (11). Information on intrapatient viral diversity during infections may therefore be missed, knowledge of which could be important in the overall understanding of the genetic diversity of this virus. We report here the analysis of individual RSV RNA molecules derived by single-genome amplification (SGA) and sequencing from clinical samples using a methodology developed for the analysis of HIV genomes (11, 14).RSV-positive samples were collected from infants admitted to Kilifi District Hospital, Kenya (10). Viral RNA extraction and cDNA synthesis were carried out as previously described (15). For population sequencing, a nested PCR was carried out on the cDNA using primers that amplified the ectodomain-coding part of the G protein gene, with the PCR product being directly sequenced. In the 2007-2008 RSV epidemic in Kilifi, group B viruses were predominant. By population sequencing of ∼100 group B samples, all were found to have the 60-nucleotide duplication observed in the Buenos Aires variant (data not shown). However, in some specimens there were some mixed bases at some positions, so the variability at the level of the single cDNA molecule was further investigated.Three samples that gave occasional mixed signals in the sequence chromatograms were further analyzed by SGA and sequencing. For SGA the cDNAs were serially diluted 3-fold up to 1:6,361. Ten nested PCRs were carried out on each dilution using Platinum high-fidelity PCR Supermix (Invitrogen) (containing Taq polymerase together with the proofreading enzyme Pyrococcus species GB-D polymerase). Based on the Poisson distribution, it has been shown that for a sample dilution yielding approximately 30% positive PCRs there is an 80% likelihood that each PCR is derived from a single cDNA molecule (11). For each of the identified endpoint dilutions, the cDNA was amplified in 80 separate nested PCRs using the high-fidelity enzyme and the positive reaction products sequenced. The nomenclature for the sequences reported in this paper is place of isolation (Kenya [Ken])/year of isolation/strain number. For SGA sequences an additional Roman number is given.The predicted length derived by population sequencing of the G proteins of the three samples examined by SGA was 310 amino acids, showing a 6-nucleotide deletion and a changed stop codon relative to the Buenos Aires strain (Fig. (Fig.1).1). The dominant sequences represented 60 to 88% of the sequences derived by SGA. The differences were due to point mutations, duplications, and deletions, as summarized in Table Table1;1; the consequences of these changes for the predicted length of the G protein are shown in Table Table22.Open in a separate windowFIG. 1.Nucleotide sequence alignment of part of the G protein gene (from nucleotide 400) of the sample 2 population sequence (Ken/08/80900) and a minority sequence (Ken/08/80900/ii), with the sequences of prototype group B strain CH18537 (accession number M17213) and Buenos Aires strain BA/3833/99B (accession number AY333362). This shows the duplication of 60 nucleotides in the Kenyan and Buenos Aires viruses relative to CH18537 and the loss of the same 60 nucleotides in the Kenyan minority sequence. Termination codons are underlined.

TABLE 1.

Diversity in the SGA-derived sequences
StrainTotal no. of SGA-derived sequencesNo. of:
VariantsSubstitutionsInsertionsDeletions
Ken/07/8039517311a0
Ken/08/80900123101b
Ken/08/80767156304c
Open in a separate windowaThe insertion involved an 8-nucleotide duplication.bThe deletion was of 60 nucleotides.cThe deletions ranged from 1 to 104 nucleotides, including one of 60 nucleotides.

TABLE 2.

Summary of nucleotide and predicted amino acid differences observed in single-genome amplification sequences
StrainSequence no.Mutation type (nucleotide position)Effect on predicted polypeptide
Ken/07/80395Ken/07/80395/iiSubstitution (264)None
Ken/07/80395/iiiDuplication (599-606)Frameshift with a subsequent premature stop codon
Ken/08/80900Ken/08/80900/iiDeletion (792-851)Reduction of length by 20 amino acids
Ken/08/80900/iiiSubstitution (539)Isoleucine-to-threonine change
Ken/08/80767Ken/08/80767/iiSubstitution (592)Immediate premature stop codon
Ken/08/80767/iiiSubstitution (233)Threonine-to-serine change
Ken/08/80767/viSubstitution (664)Immediate premature stop codon
Ken/08/80767/vDeletion (599)Frameshift with a subsequent premature stop codon
Ken/08/80767/viDeletion (599)Frameshift with a subsequent premature stop codon
Deletion (792-851)No effect due to earlier frameshift; otherwise this would cause a 20-amino-acid deletion
Ken/08/80767/viiDeletion (836-939)Frameshift, with no subsequent stop codon within the region sequenced
Open in a separate windowFor sample 1 (Ken/07/80395), 17 separate PCR products from SGA were sequenced. Sequence Ken/07/80395/i was the dominant sequence, occurring in 15/17 (88%) of the products. A synonymous mutation (T-C at 264) was seen in Ken/07/80395/ii, while Ken/07/80395/iii had an 8-nucleotide duplication starting at position 599, which resulted in a frameshift with a subsequent premature stop codon.For sample 2 (Ken/08/80900), 12 separate SGA PCR products were sequenced, with the dominant sequence (Ken/08/80900/i) occurring in 9/12 (75%) of the products. One minority sequence (Ken/08/80900/ii) had a 60-nucleotide deletion starting at position 792. This deletion was identical to the duplication that characterizes this variant (Fig. (Fig.1)1) (16). It resulted in a reduction in the length of the predicted polypeptide by the encoded 20 amino acids. Finally, a nonsynonymous mutation was seen at position 539 (T-C), causing amino acid change I175T.For sample 3 (Ken/08/80767), 15 SGA PCR products were sequenced, and the dominant sequence (Ken/08/80767/i) was seen in 9/15 (60%). The minority sequence Ken/08/80767/vi had a single adenosine deletion at nucleotide 599 together with the 60-nucleotide deletion identical to that observed for sample 2. In addition, sequence Ken/08/80767/vii had a 104-base deletion starting at position 836, which resulted in a frameshift with no subsequent stop codon in the region sequenced. Other changes for this sample are shown in Table Table22.The RSV G gene has previously been shown to be accumulating amino acid changes and associated antigenic changes in its variable regions in isolates collected over time (2, 20, 21). Sequence changes have also been observed after monoclonal antibody selection (4, 12, 13, 19), and these included point mutations and frameshifts due to insertions or deletions. In addition, analysis of molecular clones derived from cultured RSV showed that replication of the G gene, including in vitro, is prone to errors, again small insertions or deletions (1). This study reports changes similar to those described above detected directly within patients but also much more drastic changes such as the large deletions.The samples examined by SGA in this study were originally selected because of mixed bases observed by population sequencing, so the results reported here may not be applicable to all RSV infections, and further studies will be required to ascertain how far these observations are generally applicable. The possibility of artifacts should be considered. However, a high-fidelity enzyme mix was used in these experiments, and the error rate in SGA analysis of HIV-1 has been found to be low (0.011%) and without major deletions and insertions(11). The possibility of PCR contamination or mixed infections contributing to the detection of the variant genomes with the exact 60-nucleotide deletion in the same position as the original duplication can be excluded because first, all the samples tested during the period in question had the duplication, and second, the rest of the sequences of the molecules matched most closely the “parent” population sequence (Fig. (Fig.11).The results reported here confirm and extend the observations that the RSV G gene is highly prone to errors during replication, including within the patient, and so provides a pool of variants that can be subject to selection during transmission. The detection of minority genomes that showed a 60-nucleotide deletion at the exact position as the original duplication observed in the Buenos Aires strains was a surprising finding. The mechanisms for such a deletion may lie in the stem-loop structure of the viral RNA sequence that is duplicated, as described by Trento et al. (17). Such deletions provide the potential for emergence of viruses with the “normal” protein length (i.e., without the 20-amino-acid insertion), which, as such strains have been largely replaced in recent years, may be able to overcome the community immunity.  相似文献   

12.
Respiratory syncytial virus (RSV) produces three envelope glycoproteins, the attachment glycoprotein (G), the fusion (F) protein, and the small hydrophobic (SH) protein. It had been assumed, by analogy with other paramyxoviruses, that the G and F proteins would be required for the first two steps of viral entry, attachment and fusion. However, following repeated passage in cell culture, a viable mutant RSV that lacked both the G and SH genes was isolated (R. A. Karron, D. A. Buonagurio, A. F. Georgiu, S. S. Whitehead, J. E. Adamus, M. L. Clements-Mann, D. O. Harris, V. B. Randolph, S. A. Udem, B. R. Murphy, and M. S. Sidhu, Proc. Natl. Acad. Sci. USA 94:13,961--13,966, 1997). To explore the roles of the G, F, and SH proteins in virion assembly, function, and cytopathology, we have modified the full-length RSV cDNA and used it to rescue infectious RSV lacking the G and/or SH genes. The three resulting viruses and the parental virus all contain the green fluorescent protein (GFP) gene that serves to identify infected cells. We have used purified, radiolabeled virions to examine virus production and function, in conjunction with GFP to quantify infected cells. We found that the G protein enhances virion binding to target cells but plays no role in penetration after attachment. The G protein also enhances cell-to-cell fusion, presumably via cell-to-cell binding, and enhances virion assembly or release. The presence or absence of the G protein in virions has no obvious effect on the content of F protein or host cell proteins in the virion. In growth curve experiments, the viruses lacking the G protein produced viral titers that were at least 10-fold lower than titers of viruses containing the G protein. This reduction is due in large part to the less efficient release of virions and the lower infectivity of the released virions. In the absence of the G protein, virus expressing both the F and SH proteins displayed somewhat smaller plaques, lower fusion activity, and slower viral entry than the virus expressing the F protein alone, suggesting that the SH protein has a negative effect on virus fusion in cell culture.  相似文献   

13.
Human respiratory syncytial virus (HRSV) fusion (F) protein is an essential component of the virus envelope that mediates fusion of the viral and cell membranes, and, therefore, it is an attractive target for drug and vaccine development. Our aim was to analyze the neutralizing mechanism of anti-F antibodies in comparison with other low-molecular-weight compounds targeted against the F molecule. It was found that neutralization by anti-F antibodies is related to epitope specificity. Thus, neutralizing and nonneutralizing antibodies could bind equally well to virions and remained bound after ultracentrifugation of the virus, but only the former inhibited virus infectivity. Neutralization by antibodies correlated with inhibition of cell-cell fusion in a syncytium formation assay, but not with inhibition of virus binding to cells. In contrast, a peptide (residues 478 to 516 of F protein [F478-516]) derived from the F protein heptad repeat B (HRB) or the organic compound BMS-433771 did not interfere with virus infectivity if incubated with virus before ultracentrifugation or during adsorption of virus to cells at 4°C. These inhibitors must be present during virus entry to effect HRSV neutralization. These results are best interpreted by asserting that neutralizing antibodies bind to the F protein in virions interfering with its activation for fusion. Binding of nonneutralizing antibodies is not enough to block this step. In contrast, the peptide F478-516 or BMS-433771 must bind to F protein intermediates generated during virus-cell membrane fusion, blocking further development of this process.Human respiratory syncytial virus (HRSV), a member of the Pneumovirus genus of the Paramyxoviridae family, is the main cause of severe lower respiratory tract infections in very young children (36), and it is a pathogen of considerable importance in the elderly (24, 26) and in immunocompromised adults (22). Currently, there is no effective vaccine against the virus although it is known that passive administration of neutralizing antibodies to individuals at high risk is an effective immunoprophylaxis (37, 38).The HRSV genome is a single-stranded negative-sense RNA molecule of approximately 15 kb that encodes 11 proteins (16, 53). Two of these proteins are the main surface glycoproteins of the virion. These are (i) the attachment (G) protein, which mediates virus binding to cells (44), and (ii) the fusion (F) protein, which promotes both fusion of the viral and cell membranes at the initial stages of the infectious cycle and fusion of the membrane of infected cells with those of adjacent cells to form characteristic syncytia (72). These two glycoproteins are the only targets of neutralizing antibodies either induced in animal models (19, 63, 65, 70) or present in human sera (62).The G protein is a highly variable type II glycoprotein that shares neither sequence identity nor structural features with the attachment protein of other paramyxoviruses (75). It is synthesized as a precursor of about 300 amino acids (depending on the strain) that is modified posttranslationally by the addition of a large number of N- and O-linked oligosaccharides and is also palmitoylated (17). The G protein is oligomeric (probably a homotetramer) (23) and promotes binding of HRSV to cell surface proteoglycans (35, 40, 49, 67). Whether this is the only interaction of G with cell surface components is presently unknown.The F protein is a type I glycoprotein that is synthesized as an inactive precursor of 574 amino acids (F0) which is cleaved by furin during transport to the cell surface to yield two disulfide-linked polypeptides, F2 from the N terminus and F1 from the C terminus (18). Like other viral type I fusion proteins, the mature F protein is a homotrimer which is in a prefusion, metastable, conformation in the virus particle. After fusion, the F protein adopts a highly stable postfusion conformation. Stability of the postfusion conformation is determined to great extent by two heptad repeat (HR) sequences, HRA and HRB, present in the F1 chain. Mixtures of HRA and HRB peptides form spontaneously heterotrimeric complexes (43, 51) that assemble in six-helix bundles (6HB), consisting of an internal core of three HRA helices surrounded by three antiparallel HRB helices, as determined by X-ray crystallography (79).The three-dimensional (3D) structure of the HRSV F protein has not been solved yet. Nevertheless, the structures of the pre- and postfusion forms of two paramyxovirus F proteins have revealed substantial conformational differences between the pre- and postfusion conformations (77, 78). The present hypothesis about the mechanism of membrane fusion mediated by paramyxovirus F proteins proposes that, following binding of the virus to the cell surface, the prefusion form of the F glycoprotein is activated, and membrane fusion is triggered. The F protein experiences then a series of conformational changes which include the exposure of a hydrophobic region, called the fusion peptide, and its insertion into the target membrane. Subsequent refolding of this intermediate leads to formation of the HRA and HRB six-helix bundle, concomitant with approximation of the viral and cell membranes that finally fuse, placing the fusion peptide and the transmembrane domain in the same membrane (4, 20). The formation of the 6HB and the associated free energy change are tightly linked to the merger of the viral and cellular membranes (60).Antibodies play a major role in protection against HRSV. Animal studies have demonstrated that immunization with either F or G glycoproteins induces neutralizing antibodies and protects against a viral challenge (19, 63, 70). Furthermore, transfer of these antibodies (31, 56) or of anti-F or anti-G monoclonal antibodies (MAbs) protects mice, cotton rats, or calves against either a human or bovine RSV challenge, respectively (65, 68, 73). Likewise, infants at high risk of severe HRSV disease are protected by the prophylactic administration of immunoglobulins with high anti-HRSV neutralizing titers (33). Finally, a positive correlation was found between high titers of serum neutralizing antibodies and protection in adult volunteers challenged with HRSV (34, 74), while an inverse correlation was found between high titers of neutralizing antibodies and risk of infection in children (29) and in the elderly (25).Whereas all the anti-G monoclonal antibodies reported to date are poorly neutralizing (1, 28, 48, 71), some anti-F monoclonal antibodies have strong neutralization activity (1, 3, 5, 28, 46). It is believed that HRSV neutralization by anti-G antibodies requires simultaneous binding of several antibodies to different epitopes, leading to steric hindrance for interaction of the G glycoprotein with the cell surface. Indeed, it has been shown that neutralization is enhanced by mixtures of anti-G monoclonal antibodies (1, 50), mimicking the effect of polyclonal anti-G antibodies. In contrast, highly neutralizing anti-F monoclonal antibodies do not require cooperation by other antibodies to block HRSV infectivity efficiently (1).In addition to neutralizing antibodies, other low-molecular-weight compounds directed against the F protein are potent inhibitors of HRSV infectivity. Synthetic peptides that reproduce sequences of heptad repeat B inhibit both membrane fusion promoted by the F protein and HRSV infectivity (42). Also, other small molecules obtained by chemical synthesis have been shown to interact with F protein and inhibit HRSV infectivity. These HRSV entry inhibitors have been the topic of intense research in recent years (55).This study explores the mechanisms of HRSV neutralization by different inhibitors of membrane fusion, including anti-F monoclonal antibodies, an HRB peptide, and the synthetic compound BMS-433771 (13-15). The results obtained indicate that antibodies and low-molecular-weight compounds block membrane fusion at different stages during virus entry.  相似文献   

14.
15.
16.
In BALB/c mice, sensitization to respiratory syncytial virus (RSV) attachment (G) glycoprotein leads to the development of lung eosinophilia upon challenge infection with RSV, a pathology indicative of a strong in vivo induction of a Th-2-type response. In this study, we found that a strong, RSV G-specific, Th-1-type cytokine response occurred simultaneously with a Th-2-type response in G-primed mice after RSV challenge. Both Th-1 and Th-2 effector CD4(+) T cells recognized a single immunodominant site on this protein, implying that the differentiation of memory CD4(+) T cells along the Th-1 or Th-2 effector pathway was independent of the epitope specificity of the T cells. A similar observation was made in G-primed H-2(b) haplotype mice after RSV challenge, further suggesting that this process is not dependent on the peptide epitope presented. On the other hand, genes mapping to loci outside of the major histocompatibility complex region are crucial regulators of the development of a Th-2-type response and lung eosinophilia. The implication of these findings for the immune mechanisms underlying the pathogenesis of RSV is discussed.  相似文献   

17.
The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.  相似文献   

18.
19.
20.
Temperature-sensitive Mutants of Respiratory Syncytial Virus   总被引:9,自引:3,他引:9       下载免费PDF全文
Four conditional-lethal temperature-sensitive mutants of RS virus were detected among the progeny of 454 plaques derived from virus grown in the presence of 10(-4)m 5-fluorouridine. These mutants were stable (reversion frequency, 10(-5.0) or less and failed to produce plaques at 38 or 39 C. Plaquing efficiency was depressed 100-fold or more at 37 C. Variable suppression of growth at the restrictive temperature of 39 C was observed, ranging from 16-fold to complete suppression. The temperature-sensitive defect of three of the mutants appeared to affect functions which were expressed late in the replicative cycle. One of the mutants produced atypical nonsyncytial plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号