首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E-nonenal (4-HNE) have been characterized as prominent by-products of n-3 and n-6 hydroperoxy derivatives of n-3 and n-6 fatty acids, respectively. We also have characterized the homolog 4-hydroxy-2E,6Z-dodecadienal (4-HDDE) as a specific by-product of the 12-lipoxygenase product of arachidonic acid 12-hydroperoxy-eicosatetraenoate (12-HpETE). The three hydroxy-alkenals have been found in human plasma with 4-HHE being the most prominent followed by 4-HNE. They were found increased in tissues submitted to oxidative stress, according to the fatty acid characteristic of those tissues, e.g., 4-HNE and 4-HDDE in blood platelets and 4-HHE in the retina. We have shown they covalently bind to the primary amine moiety of ethanolamine phospholipids (PE), especially the plasmalogen subclass, with the highest hydrophobic alkenal (4-HDDE) being the most reactive. Their carboxylic acid metabolites, 4-hydroxy-2E-hexenoic acid (4-HHA), 4-hydroxy-2E-nonenoic acid (4-HNA) and 4-hydroxy-2E,6Z-dodecadienoic acid (4-HDDA), respectively, were found in human urine and measured in higher amounts in situations in which oxidative stress has been reported such as aging and diabetes. As reported above with their hydroxy-alkenals precursors, 4-HHA proved to be the most prominent followed by 4-HNA. Altogether, the three hydroxy-alkenals, either in their free form or bound to membrane PE, may be considered as specific markers of lipid peroxidation able to discriminate between n-3 and n-6 fatty acids. This is corroborated by the measurement of their urinary carboxylic acid metabolites.  相似文献   

2.
Lipid oxidation is implicated in a wide range of pathophysiogical disorders, and leads to reactive compounds such as fatty aldehydes, of which the most well known is 4-hydroxy-2E-nonenal (4-HNE) issued from 15-hydroperoxyeicosatetraenoic acid (15-HpETE), an arachidonic acid (AA) product. In addition to 15-HpETE, 12(S)-HpETE is synthesized by 12-lipoxygenation of platelet AA. We first show that 12-HpETE can be degraded in vitro into 4-hydroxydodeca-(2E,6Z)-dienal (4-HDDE), a specific aldehyde homologous to 4-HNE. Moreover, 4-HDDE can be detected in human plasma. Second, we compare the ability of 4-HNE, 4-HDDE, and 4-hydroxy-2E-hexenal (4-HHE) from n-3 fatty acids to covalently modify different ethanolamine phospholipids (PEs) chosen for their biological relevance, namely AA- (20: 4n-6) or docosahexaenoic acid- (22:6n-3) containing diacyl-glycerophosphoethanolamine (diacyl-GPE) and alkenylacyl-glycerophosphoethanolamine (alkenylacyl-GPE) molecular species. The most hydrophobic aldehyde used, 4-HDDE, generates more adducts with the PE subclasses than does 4-HNE, which itself appears more reactive than 4-HHE. Moreover, the aldehydes show higher reactivity toward alkenylacyl-GPE compared with diacyl-GPE, because the docosahexaenoyl-containing species are more reactive than those containing arachidonoyl. We conclude that the different PE species are differently targeted by fatty aldehydes: the higher their hydrophobicity, the higher the amount of adducts made. In addition to their antioxidant potential, alkenylacyl-GPEs may efficiently scavenge fatty aldehydes.  相似文献   

3.
4-Hydroxy-nonenal (4-HNE) is a major by-product of n-6 fatty acid peroxidation. It has been described to covalently bind biomolecules expressing primary amine, especially the Lys residues in proteins. Low-density lipoproteins (LDL) are well-described macromolecules to be modified by 4-HNE, making them available to scavenger receptors on macrophages. Those macrophages then become foam cells and play an active role in atherogenesis. This paper reports on the covalent binding of 4-HNE to phosphatidylethanolamine (PE), a major aminophospholipid in biological membranes. In contrast, phosphatidylserine (PS) is virtually not modified by 4-HNE. One stable adduct, the Michael adduct PE/4-HNE is a poor substrate of secreted phospholipase A(2) and is not cleaved by phospholipase D. Plasmalogen PE, an important subclass of PE, is covalently modified by 4-HNE as well, but appears to be further degraded on its sn-1 position, the alkenyl chain, which might alter the antioxidant potential of the molecule. An aldehyde homologous to 4-HNE has been characterized as a breakdown product of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) and named 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). This compound as well as 4-HNE was detected in human plasma. Finally, 4-HDDE appears almost 3-fold more active than 4-HNE to make covalent adducts with PE. We conclude that 4-HNE and 4-HDDE are two biologically relevant markers of n-6 fatty acid peroxidation that may alter the phospholipid-dependent cell signaling.  相似文献   

4.
5.
Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to -19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine.  相似文献   

6.
7.
8.
The α,β-unsaturated aldehyde 4-hydroxy-2-nonenal (4-HNE) is an endogenous product of oxidative stress that is found at increased levels in the lungs of patients with chronic obstructive pulmonary disease (COPD) and animal models of this lung disorder. In the present study, levels of 4-HNE adducts were increased in two different mouse models of COPD. Challenging lungs with 4-HNE enlarged the airspace and induced goblet cell metaplasia of the airways in mice, two characteristics of COPD. 4-HNE induced the accumulation of inflammatory cells expressing high levels of MMP-2 and MMP-9. Our results indicate that 4-HNE production during oxidative stress is a key pathway in the pathogenesis of COPD.  相似文献   

9.
Here we report on the marked protective effect of resveratrol on 4-hydroxynonenal (4-HNE) induced oxidative stress and apoptotic death in Swiss 3T3 fibroblasts. 4-HNE, one of the major aldehydic products of the peroxidation of membrane w-6 polyunsaturated fatty acids, has been suggested to contribute to oxidant stress mediated cell injury. Indeed, in vitro treatment of 3T3 fibroblasts with 4-HNE induced a condition of oxidative stress as monitored by the oxidation of dichlorofluorescein diacetate; this reaction was prevented when cells were pretreated with resveratrol. Further, 4-HNE-treated fibroblasts eventually underwent apoptotic death as determined by differential staining and internucleosomal DNA fragmentation. Resveratrol pretreatment also prevented 4-HNE induced DNA fragmentation and apoptosis. These observations are consistent with a potential role of lipid peroxidation-derived products in programmed cell death and demonstrate that resveratrol can counteract this effect by quenching cell oxidative stress.  相似文献   

10.
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2-nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationship to the development of insulin resistance, proteomics technologies were utilized to identify aldehyde-modified proteins in adipose tissue. Adipose proteins from lean insulin-sensitive and obese insulin-resistant C57Bl/6J mice were incubated with biotin hydrazide and detected using horseradish peroxidase-conjugated streptavidin. High carbohydrate, high fat feeding of mice resulted in a approximately 2-3-fold increase in total adipose protein carbonylation. Consistent with an increase in oxidative stress in obesity, the abundance of glutathione S-transferase A4 (GSTA4), a key enzyme responsible for metabolizing 4-HNE, was decreased approximately 3-4-fold in adipose tissue of obese mice. To identify specific carbonylated proteins, biotin hydrazide-modified adipose proteins from obese mice were captured using avidin-Sepharose affinity chromatography, proteolytically digested, and subjected to LC-ESI MS/MS. Interestingly enzymes involved in cellular stress response, lipotoxicity, and insulin signaling such as glutathione S-transferase M1, peroxiredoxin 1, glutathione peroxidase 1, eukaryotic elongation factor 1alpha-1 (eEF1alpha1), and filamin A were identified. The adipocyte fatty acid-binding protein, a protein implicated in the regulation of insulin resistance, was found to be carbonylated in vivo with 4-HNE. In vitro modification of adipocyte fatty acid-binding protein with 4-HNE was mapped to Cys-117, occurred equivalently using either the R or S enantiomer of 4-HNE, and reduced the affinity of the protein for fatty acids approximately 10-fold. These results indicate that obesity is accompanied by an increase in the carbonylation of a number of adipose-regulatory proteins that may serve as a mechanistic link between increased oxidative stress and the development of insulin resistance.  相似文献   

11.
Shearn CT  Fritz KS  Reigan P  Petersen DR 《Biochemistry》2011,50(19):3984-3996
The production of reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of hepatic diseases involving oxidative stress such as alcoholic liver disease (ALD). One consequence of ALD is increased insulin resistance in hepatocytes. To understand the effects of 4-HNE on insulin signaling in liver cells, we employed a model using hepatocellular carcinoma cell line HepG2. Previously, we have demonstrated an increase in the level of Akt phosphorylation is mediated by 4-HNE inhibition of PTEN, a direct regulator of Akt. In this work, we evaluated the effects of 4-HNE on insulin-dependent stimulation of the Akt2 pathway. We demonstrate that 4-HNE selectively leads to phosphorylation of Akt2. Although Akt2 is phosphorylated following 4-HNE treatment, the level of downstream phosphorylation of Akt substrates such as GSK3β and MDM2 is significantly decreased. Pretreatment with 4-HNE prevented insulin-dependent Akt signaling and decreased intracellular Akt activity by 87%. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of Akt2, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt2 (rAkt2) with 20 or 40 μM 4-HNE inhibited rAkt2 activity by 30 or 85%, respectively. Matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF) identified Michael addition adducts of 4-HNE with His196, His267, and Cys311 of rAkt2. Computation-based molecular modeling analysis of 4-HNE adducted to His196 and Cys311 of Akt2 suggests inhibition of GSK3β peptide binding by 4-HNE in the Akt2 substrate binding pocket. The inhibition of Akt by 4-HNE provides a novel mechanism for increased insulin resistance in ALD. These data provide a potential mechanism of dysregulation of Akt2 during events associated with sustained hepatocellular oxidative stress.  相似文献   

12.
Hepatic oxidative stress and lipid peroxidation are common features of several prevalent disease states, including alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), a common component of the metabolic syndrome. These conditions are characterized in part by excessive accumulation of lipids within hepatocytes, which can lead to autocatalytic degradation of cellular lipids giving rise to electrophilic end products of lipid peroxidation. The pathobiology of reactive lipid aldehydes remains poorly understood. We therefore sought to investigate the effects of 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) on the transport and secretion of very low-density lipoprotein using HepG2 cells as a model hepatocyte system. Physiologically relevant concentrations of 4-HNE and 4-ONE rapidly disrupted cellular microtubules in a concentration-dependent manner. Interestingly, 4-ONE reduced apolipoprotein B-100 (ApoB) secretion while 4-HNE did not significantly impair secretion. Both 4-HNE and 4-ONE formed adducts with ApoB protein, but 4-HNE adducts were detectable as mono-adducts, while 4-ONE adducts were present as protein–protein cross-links. These results demonstrate that reactive aldehydes generated by lipid peroxidation can differ in their biological effects, and that these differences can be mechanistically explained by the structures of the protein adducts formed.  相似文献   

13.
UCP3 has been postulated to function in the defense against lipid-induced oxidative muscle damage (lipotoxicity). We explored this hypothesis during cachexia in rats (zymosan-induced sepsis), a condition characterized by increased oxidative stress and supply of fatty acids to the muscle. Muscle UCP3 protein content was increased 2, 6 and 11 days after zymosan injection. Plasma FFA levels were increased at day 2, but dropped below control levels on days 6 and 11. Muscular levels of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were increased at days 6 and 11 in zymosan-treated rats, supporting a role for UCP3 in modulating lipotoxicity during cachexia.  相似文献   

14.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

15.
Oxidative stress is believed to be an important factor in the development of age-related neurodegenerative diseases such as Alzheimer's disease (AD). The CNS is enriched in polyunsaturated fatty acids and is therefore particularly vulnerable to lipid peroxidation. Indeed, accumulation of lipid peroxidation products has been demonstrated in affected regions in brains of AD patients. Another feature of AD is a change in neuronal microtubule organization. A possible causal relationship between lipid peroxidation products and changes in neuronal cell motility and cytoskeleton has not been investigated. We show here that 4-hydroxy-2(E)-nonenal (HNE), a major product of lipid peroxidation, inhibits neurite outgrowth and disrupts microtubules in Neuro 2A cells. The effect of HNE on microtubules was rapid, being observed after incubation times as short as 15 min. HNE can react with target proteins by forming either Michael adducts or pyrrole adducts. 4-Oxononanal, an HNE analogue that can form only pyrrole adducts but not Michael adducts, had no effect on the microtubules. This suggests that the HNE-induced disruption of microtubules occurs via Michael addition. We also show that cellular tubulin is one of the major proteins modified by HNE and that the HNE adduction to tubulin occurs via Michael addition. Inhibition of neurite outgrowth, disruption of microtubules, and tubulin modification were observed at pathologically relevant HNE concentrations and were not accompanied by cytotoxicity. Our results show that these are proximal effects of HNE that may contribute to cytoskeletal alterations that occur in AD.  相似文献   

16.
The electrophilic lipid oxidation product 4-hydroxy-2-nonenal (HNE) reacts with proteins to form covalent adducts, and this damage has been implicated in pathologies associated with oxidative stress. HNE adduction of blood proteins, such as human serum albumin (HSA), yields adducts that may serve as markers of oxidative stress in vivo. We used liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the P-Mod algorithm to map the sites of 10 adducts formed by reaction of HNE with HSA in vitro. The detected adducts included Michael adducts formed at histidine and lysine residues. The selectivity of HNE in competing adduction reactions was evaluated by analysis of kinetics for HNE Michael adduction at six targeted HSA histidine residues. Reaction kinetics were analyzed by selected reaction monitoring in LC-MS-MS using stable isotope tagging with phenyl isocyanate. Rate constants ranged over 4 orders of magnitude, with the order of reactivity being H242 > H510 > H67 > H367 > H247 approximately K233. The most reactive target, H242, is located in a fatty acid- and drug binding cavity in subdomain IIa of HSA and appears to be a hot-spot for HNE modification. Analysis of adduction kinetics together with HSA structure and target residue pK(a) values suggest that location in the hydrophobic binding cavity and low predicted pK(a) of H242 account for its high reactivity toward HNE. H242 adducts may be preferred products of adduction by lipophilic electrophiles and may comprise a family of biomarkers for oxidative stress.  相似文献   

17.
Toll-like receptors (TLRs) detect invading microbial pathogens and initiate immune responses as part of host defense mechanisms. They also respond to host-derived substances released from injured cells and tissues to ensure wound healing and tissue homeostasis. Dysregulation of TLRs increases the risk of chronic inflammatory diseases and immune disorders. Inflammatory events are often accompanied by oxidative stress, which generates lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE). Therefore, we investigated if 4-HNE affects TLR activation. We found that 4-HNE blocked LPS (a TLR4 agonist)-induced activation of NFκB and IRF3 as well as expression of IFNβ, IP-10, RANTES, and TNFα. To investigate the mechanism of inhibition by 4-HNE, we examined its effects on TLR4 dimerization, one of the initial steps in TLR4 activation. 4-HNE suppressed both ligand-induced and ligand-independent receptor dimerization. The thiol donors, DTT and NAC, prevented the inhibitory effects of 4-HNE on TLR4 dimerization, and LC–MS/MS analysis showed that 4-HNE formed adducts with cysteine residues of synthetic peptides derived from TLR4. These observations suggest that the reactivity of 4-HNE with sulfhydryl moieties is implicated in the inhibition of TLR4 activation. Furthermore, inhibition of TLR4 activation by 4-HNE resulted in down-regulation of the phagocytic activity of macrophages. Collectively, these results demonstrate that 4-HNE blocks TLR4-mediated macrophage activation, gene expression, and phagocytic functions, at least partly by suppressing receptor dimerization. They further suggest that 4-HNE influences innate immune responses at sites of infection and inflammation by inhibiting TLR4 activation.  相似文献   

18.
Abstract— Phosphoglyceride and fatty acid composition was determined in the cellular membranes of isolated cerebral microvessels and brain parenchymal cells (neurons and glia) taken from 10-, 20-, and 27–30-month-old C57BL6/NNIA mice. Lipids were extracted from each fraction and the fatty acid profiles of ethanolamine, cho-line, serine, and inositol phosphoglycerides analyzed by gas chromatography. The results suggest that membrane phosphoglycerides from cerebral microvessels are significantly more affected by the aging process than are those of the brain parenchyma. Relative percentage for fatty acids in cerebral microvessels indicate an overall decline in membrane unsaturation with a concomitant elevation in the level of saturation. The decline in unsaturation is reflected primarily in the loss of precursor fatty acids for arachidonic (18:2n-6 and 20:3n-6) and docosahexaenoic (20:5n-3 and 22:5n-3) acids. Levels of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids in each phos-phoglyceride remained unchanged with age; however, mol% for ethanolamine plasmalogen, a major source of these fatty acids, was significantly reduced in 27–30-month-old mice. Conversely, mol% for choline phospho-glyceride increased with age. The age-related changes in fatty acid profile for microvessel membrane phosphoglycerides are reflected by increased saturation/unsaturation ratios and decreased unsaturation indices. These parameters were not affected by aging in parenchymal membranes.  相似文献   

19.
Covalent modifications of aminophospholipids by 4-hydroxynonenal   总被引:2,自引:0,他引:2  
Lipid oxidation is implicated in a wide range of pathophysiological disorders, which leads to reactive compounds such as aldehydes. Among them 4-hydroxynonenal (4-HNE) reacts strongly with the NH2 groups of amino acids and forms mainly Michael adducts and minor Schiff-base adducts. Such reactions occur also with compounds containing thiol groups. No data are available describing 4-HNE interactions with amino-phospholipids. To investigate such a possibility, 4-HNE was incubated with either phosphatidylethanolamine (PE) or phosphatidylserine (PS) in an aqueous-organic biphasic system and the resulting products were identified by liquid chromatography-mass spectrometry (LC-MS). Our study points out the potential capacity of 4-HNE to react with phospholipids containing amino groups and particularly PE. The main resulting compounds found were a Michael adduct plus a minor Schiff base adduct, which was partly cyclized as a pyrrole derivative via a loss of water. Its stabilization as a pyrrole derivative allows to differentiate 4-HNE from the other aldehydes generated via lipid oxidation (e.g., malondialdehyde, 2-nonenal) that lack the 4-hydroxyl group. Their formation seems not to be affected when the pH varies from 6.5 to 8.5. Surprisingly, PS reacted poorly producing only a small amount of Michael adduct, the Schiff-base adduct being nondetectable. We conclude that such adducts, if they are formed in cell membranes, could alter the phospholipase-dependent cell signaling.  相似文献   

20.
Both animal and epidemiological studies support an effect of fatty acid composition in the diet on cancer development, in particular on colon cancer. We investigated the modulating effect of supplementation of the diet of female F344 rats with sunflower-, rapeseed-, olive-, or coconut oil on the formation of the promutagenic, exocyclic DNA adducts in the liver, an organ where major metabolism of fatty acids takes place. 1,N(6)-ethenodeoxyadenosine (etheno-dA), 3,N(4)-ethenodeoxycytidine (etheno-dC) and 1,N(2)-propandodeoxyguanosine from 4-hydroxy-2-nonenal (HNE-dGp) were determined as markers for DNA-damage derived from lipid peroxidation products and markers for oxidative stress. 8-Oxo-deoxyguanosine (8-Oxo-dG) was also measured as direct oxidative stress marker. The body weight of the rats was not influenced by the four diets containing the different vegetable oils during the 4-week feeding period. Highest adduct levels of etheno-dC (430 +/- 181 adducts/10(9) parent bases), HNE-dGp (617 +/- 96 adducts/10(9) parent bases) and 8-Oxo-dG (37,400 +/- 12,200 adducts/10(9) parent bases) were seen in rats on sunflower oil diet (highest linoleic acid content). Highest adducts levels of etheno-dA (133 +/- 113 adducts/10(9) parent bases) were found in coconut oil diet (lowest content of linoleic acid). Weakly positive correlations between linoleic acid content in the four diet groups were only observed for levels of HNE-dGp and 8-Oxo-dG. Neither the diet based on olive oil (which contains mainly oleic acid) nor the diet based on rapeseed oil (containing alpha-linolenic acid) exerted any significant protective effect against oxidative DNA damage. Our results indicate that a high linoleic acid diet may contribute to oxidative stress in the liver of female rats leading to a marginal increase in oxidative DNA-damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号