首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A yeast two-hybrid screen was conducted to identify binding partners of Mlf1, an oncoprotein recently identified in a translocation with nucleophosmin that causes acute myeloid leukemia. Two proteins isolated in this screen were 14-3-3zeta and a novel adaptor, Madm. Mlf1 contains a classic RSXSXP sequence for 14-3-3 binding and is associated with 14-3-3zeta via this phosphorylated motif. Madm co-immunoprecipitated with Mlf1 and co-localized in the cytoplasm. In addition, Madm recruited a serine kinase, which phosphorylated both Madm and Mlf1 including the RSXSXP motif. In contrast to wild-type Mlf1, the oncogenic fusion protein nucleophosmin (NPM)-MLF1 did not bind 14-3-3zeta, had altered Madm binding, and localized exclusively in the nucleus. Ectopic expression of Madm in M1 myeloid cells suppressed cytokine-induced differentiation unlike Mlf1, which promotes maturation. Because the Mlf1 binding region of Madm and its own dimerization domain overlapped, the levels of Madm and Mlf1 may affect complex formation and regulate differentiation. In summary, this study has identified two partner proteins of Mlf1 that may influence its subcellular localization and biological function.  相似文献   

2.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

3.
4.
5.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   

6.
《The Journal of cell biology》1996,134(6):1365-1373
Nascent pre-mRNAs associate with the abundant heterogeneous nuclear RNP (hnRNP) proteins and remain associated with them throughout the time they are in the nucleus. The hnRNP proteins can be divided into two groups according to their nucleocytoplasmic transport properties. One group is completely restricted to the nucleus in interphase cells, whereas the other group, although primarily nuclear at steady state, shuttles between the nucleus and the cytoplasm. Nuclear export of the shuttling hnRNP proteins is mediated by nuclear export signals (NESs). Mounting evidence indicates that NES-bearing hnRNP proteins are mediators of mRNA export. The hnRNP C proteins are representative of the nonshuttling group of hnRNP proteins. Here we show that hnRNP C proteins are restricted to the nucleus not because they lack an NES, but because they bear a nuclear retention sequence (NRS) that is capable of overriding NESs. The NRS comprises approximately 78 amino acids and is largely within the auxiliary domain of hnRNP C1. We suggest that the removal of NRS-containing hnRNP proteins from pre- mRNA/mRNA is required for mRNA export from the nucleus and is an essential step in the pathway of gene expression.  相似文献   

7.
8.
Maintenance of telomeres is implicated in chromosome stabilization and cell immortalization. Telomerase, which catalyzes de novo synthesis of telomeres, is activated in germ cells and most cancers. Telomerase activity is regulated by gene expression for its catalytic subunit, TERT, whereas several lines of evidence have suggested a post-translational regulation of telomerase activity. Here we identify the 14-3-3 signaling proteins as human TERT (hTERT)-binding partners. A dominant-negative 14-3-3 redistributed hTERT, which was normally predominant in the nucleus, into the cytoplasm. Consistent with this observation, hTERT-3A, a mutant that could not bind 14-3-3, was localized into the cytoplasm. Leptomycin B, an inhibitor of CRM1/exportin 1-mediated nuclear export, or disruption of a nuclear export signal (NES)-like motif located just upstream of the 14-3-3 binding site in hTERT impaired the cytoplasmic localization of hTERT. Compared with wild-type hTERT, hTERT-3A increased its association with CRM1. 14-3-3 binding was not required for telomerase activity either in vitro or in cell extracts. These observations suggest that 14-3-3 enhances nuclear localization of TERT by inhibiting the CRM1 binding to the TERT NES-like motif.  相似文献   

9.
10.
J G Laing  J L Wang 《Biochemistry》1988,27(14):5329-5334
In previous studies, a lectin designated as carbohydrate binding protein 35 (CBP35) was identified in the nucleus and cytoplasm of cultured mouse 3T3 fibroblasts. In the present study, we observed that treatment of Triton X-100 permeabilized 3T3 cells with ribonuclease A released CBP35 from the nuclei, while parallel treatment with deoxyribonuclease I failed to do so. This conclusion was based on (a) immunofluorescence analysis of the nuclear residue after detergent and enzymatic treatments and (b) immunoblotting analysis of the supernatant fraction produced by these treatments. These results indicate that CBP35 may be associated with the ribonucleoprotein elements of the 3T3 cell nuclei. In corroboration with this conclusion, fractionation of the nucleoplasm derived from 3T3 cells on a cesium sulfate gradient (1.25-1.75 g/mL) localized CBP35 in fractions with densities of 1.30-1.32 g/mL, corresponding to the range of densities reported for heterogeneous nuclear ribonucleoprotein complex (hnRNP). Conversely, when nucleoplasm was fractionated on an affinity column of Sepharose derivatized with N-(epsilon-aminocaproyl)-D-galactosamine, the bound and eluted fraction contained RNA, as well as a set of polypeptides whose molecular weights matched those reported for the core particle of hnRNP. One of these polypeptides was identified as CBP35. These results suggest that CBP35 is a component of hnRNP.  相似文献   

11.
12.
We identified heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2, hnRNP A1, the translocase of the transporter outer membrane 40 (TOM40), and α‐tubulin as new interaction partners of anti‐apoptotic protein p35 using MS‐based functional proteomics with GST‐p35 fusion protein as a bait, and using a pull‐down assay with p35‐6His followed by Western blot analysis. p35 was localized in the cytoplasm and in distinct organelles such as the nucleus and mitochondria. p35 was more abundant in the cytoplasm than it was in the nucleus. It co‐localized with α‐tubulin in the cytoplasm in the absence of a death stimulus. However, while cells were undergoing death induced by actinomycin D, cytoplasmic p35 was translocated into the nucleus; this process was inhibited by deletions of the N‐ and C‐terminal domains containing leucine‐rich motifs. Gene delivery of p35 using recombinant adenoviruses inhibited cytoplasmic compartmentalization of hnRNP C1/C2 and hnRNP A1 in dying cells. This study demonstrated translocation of p35 into the nuclei, as well as protection of the hnRNPs from redistribution in cells undergoing death. We propose an active role for p35 in maintaining the integrity of nuclear proteins during cell death.  相似文献   

13.
The Src homology 2 domain-containing protein tyrosine phosphatases SHP-1 and SHP-2 play an important role in many intracellular signaling pathways. Both SHP-1 and SHP-2 have been shown to interact with a diverse range of cytosolic and membrane-bound signaling proteins. Generally, SHP-1 and SHP-2 perform opposing roles in signaling processes; SHP-1 acts as a negative regulator of transduction in hemopoietic cells, whereas SHP-2 acts as a positive regulator. Intriguingly, SHP-1 has been proposed to play a positive regulating role in nonhemopoietic cells, although the mechanisms for this are not understood. Here we show that green fluorescent protein-tagged SHP-1 is unexpectedly localized within the nucleus of transfected HEK293 cells. In contrast, the highly related SHP-2 protein is more abundant within the cytoplasm of transfected cells. In accordance with this, endogenous SHP-1 is localized within the nucleus of several other nonhemopoietic cell types, whereas SHP-2 is distributed throughout the cytoplasm. In contrast, SHP-1 is confined to the cytoplasm of hemopoietic cells, with very little nuclear SHP-1 evident. Using chimeric SHP proteins and mutagenesis studies, the nuclear localization signal of SHP-1 was identified within the C-terminal domain of SHP-1 and found to consist of a short cluster of basic amino acids (KRK). Although the KRK motif resembles half of a bipartite nuclear localization signal, it appears to function independently and is absolutely required for nuclear import. Our findings show that SHP-1 and SHP-2 are distinctly localized within nonhemopoietic cells, with the localization of SHP-1 differing dramatically between nonhemopoietic and hemopoietic cell lineages. This implies that SHP-1 nuclear import is a tightly regulated process and indicates that SHP-1 may possess novel nuclear targets.  相似文献   

14.
We have cloned and characterized a novel isoform of the skeletal muscle LIM protein 1 (SLIM1), designated SLIMMER. SLIM1 contains an N-terminal single zinc finger followed by four LIM domains. SLIMMER is identical to SLIM1 over the first three LIM domains but contains a novel C-terminal 96 amino acids with three potential bipartite nuclear localization signals, a putative nuclear export sequence, and 27 amino acids identical to the RBP-J binding region of KyoT2, a murine isoform of SLIM1. SLIM1 localized to the cytosol of Sol8 myoblasts and myotubes. SLIMMER was detected in the nucleus of myoblasts and, following differentiation into myotubes, was exclusively cytosolic. Recombinant green fluorescent protein-SLIM1 localized to the cytoplasm and associated with focal adhesions and actin filaments in COS-7 cells, while green fluorescent protein-SLIMMER was predominantly nuclear. SLIMMER truncation mutants revealed that the first nuclear localization signal mediates nuclear localization. The addition of the proposed nuclear export sequence decreased the level of exclusively nuclear expression and increased cytosolic SLIMMER expression in COS-7 cells. The leucine-rich nuclear export signal was required for the export of SLIMMER from the nucleus of myoblasts to the cytoplasm of myotubes. Collectively, these results suggest distinct roles for SLIM1 and SLIMMER in focal adhesions and nuclear-cytoplasmic communication.  相似文献   

15.
Lipofection of nondividing cells is inefficient because much of the transfected DNA is retained in endosomes, and that which escapes to the cytoplasm enters the nucleus at low rates. To improve the final rate-limiting step of nuclear import, we conjugated a nonclassical nuclear localization signal (NLS) containing the M9 sequence of heterogeneous nuclear ribonucleoprotein (hnRNP) A1, to a cationic peptide scaffold derived from a scrambled sequence of the SV40 T-antigen consensus NLS (ScT). The ScT was added to improve DNA binding of the M9 sequence. Lipofection of confluent endothelium with plasmid complexed with the M9-ScT conjugate resulted in 83% transfection and a 63-fold increase in marker gene expression. The M9-ScT conjugate localized fluorescent plasmid into the nucleus of permeabilized cells, and addition of the nuclear pore blocker wheat germ agglutinin prevented nuclear import. This method of gene transfer may lead to viral- and lipid-free transfection of nondividing cells.  相似文献   

16.
Shi ST  Yu GY  Lai MM 《Journal of virology》2003,77(19):10584-10593
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has previously been shown to bind mouse hepatitis virus (MHV) RNA at the 3' end of both plus and minus strands and modulate MHV RNA synthesis. However, a mouse erythroleukemia cell line, CB3, does not express hnRNP A1 but still supports MHV replication, suggesting that alternative proteins can replace hnRNP A1 in cellular functions and viral infection. In this study, we set out to identify these proteins. UV cross-linking experiments revealed that several CB3 cellular proteins similar in size to hnRNP A1 interacted with the MHV RNA. These proteins were purified by RNA affinity column with biotinylated negative-strand MHV leader RNA and identified by mass spectrometry to be hnRNP A2/B1, hnRNP A/B, and hnRNP A3, all of which belong to the type A/B hnRNPs. All of these proteins contain amino acid sequences with strong similarity to the RNA-binding domains of hnRNP A1. Some of these hnRNPs have previously been shown to replace hnRNP A1 in regulating RNA splicing. These proteins displayed MHV RNA-binding affinity and specificity similar to those of hnRNP A1. hnRNP A2/B1, which is predominantly localized to the nucleus and shuttles between the nucleus and the cytoplasm, was shown to relocalize to the cytoplasm in MHV-infected CB3 cells. Furthermore, overexpression of hnRNP A/B in cells enhanced MHV RNA synthesis. Our findings demonstrate that the functions of hnRNP A1 in MHV RNA synthesis can be replaced by other closely related hnRNPs, further supporting the roles of cellular proteins in MHV RNA synthesis.  相似文献   

17.
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.  相似文献   

18.
19.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号