首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Campaniform sensilla on the trochanter of the mesothoracic legs of the locust were backfilled with cobalt salts or horseradish peroxidase for light and electron microscopy. The distribution of the terminal branches of afferent neurones in the thoracic ganglia were described from wholemount preparations and from thick slices through the ganglia. Ultrathin sections of identified branches were processed with GABA antibodies using a post-embedding immunogold technique and examined in the electron microscope. Input synapses were observed on fine varicose branches in all regions of the terminal arborisations close to the sites of afferent output. The major branches neither make nor receive synapses. Seventy-two percent of the input synapses are made by processes immunoreactive for GABA. Immunoreactive and non-immunoreactive processes synapse onto afferent terminals in close proximity. In some instances GABA-immunoreactive processes presynaptic to an afferent are also presynaptic to a non-immunoreactive presynaptic processes strongly suggesting that different presynaptic influences can interact directly with each other.  相似文献   

2.
Using a well characterized anti-serum, the distribution of octopamine-like immunoreactive neurones is described in the locust seventh abdominal (A7) and terminal ganglia (TG), which are associated with genital organs. Apart from 4 paired ventral somata occasionally observed in the TG, all labelled cells could be identified as efferent dorsal- and ventral unpaired median (DUM/VUM) neurones by virtue of the characteristic large size and position of their somata, projections of their primary neurites in DUM-cell tracts, and bifurcating axons which arise from dorsal T-junctions and enter peripheral nerves. For the examined ganglia our data indicate that the whole population of efferent DUM and VUM-cells, defined here as progeny of the segment specific unpaired median neuroblast with peripheral axons, are octopaminergic, and that equal numbers of these cells occur in both sexes: 8 in A7 and 11 in TG. Sex-specific differences are probably restricted to the axonal projections of 5 octopamine-like immunoreactive DUM-somata in A7, and 5 in TG, which in females project into their segment specific sternal nerves, but in males into the genital nerve of the TG. Numerous intersegmentally projecting octopamine-like immunoreactive fibres traverse both ganglia. The majority probably stem from previously described octopamine-like immunoreactive neurones in the thoracic and suboesophageal ganglia.  相似文献   

3.
A polyclonal antibody against allatostatin 1 (AST-1) of cockroach Diploptera punctata was used to investigate the distribution of AST-like immunoreactivity within the abdomen of the locust, Schistocerca gregaria. In the abdominal ganglia, AST-like immunoreactivity was found in both cell bodies and neuropile. In ganglia 6 and 7, staining was found in serial homologous cell bodies in anterior dorsolateral and dorsomedial, and posterior ventrolateral and ventromedial locations. In the terminal ganglion, the numerous immunoreactive somata were smaller in size than those in the unfused ganglia. The combination of backfill experiments with immunocytochemistry showed that, in abdominal ganglion 7, one neuron of the ventromedian cell body cluster and two of the ventrolateral cluster innervated the oviduct, which itself was covered with a dense mesh of AST-immunoreactive varicosities. Combining electron microscopy with immunohistochemistry revealed AST-like immunoreactivity in dense-core vesicles located in neurohaemal-like terminals lacking structures normally found in synapses. A mesh of AST-immunoreactive varicosities was also found on the muscles of the spermatheca and the spermathecal duct. In addition, a mesh of strongly stained varicosities was present in the distal perisympathetic organs (neurohaemal organs in the abdomen) and on the lateral heart nerves (a putative neurohaemal release zone). These data indicate that AST is an important neuroactive substance that is probably involved in multiple tasks in the control of the locust abdomen.  相似文献   

4.
Summary Three antisera were used to study the distribution and anatomy of bovine pancreatic polypeptide (BPP)-like/FMRFamide-like immunoreactive neurones within the unfused abdominal ganglia of the migratory locust, Locusta migratoria. All the antisera used stained two or more clusters of perikarya, localized anteriorly and posteriorly near the midline within each unfused abdominal ganglion. Double labelling experiments with intracellular dye injection, or differential backfilling, combined with subsequent immunostaining were carried out to identify these neurones. Two of the antisera (antisera 1 and 2, both raised against FMRFamide) stained three groups of midline neurones, located anterior dorsal, anterior ventral and posterior dorsal within the ganglion. Neurones of the former of these two clusters projected via the anterior median nerve to a neurohaemal organ. The posterior cluster of midline cells comprised immunopositive perikarya all but one of which also projected via the anterior median nerve to innervate the neurohaemal organ. Double labelling with Lucifer yellow and antisera 1 and 2 showed that the remaining neurone was the previously identified doral unpaired median (DUM)heart1 neurone. The third antiserum (AK141), also raised against FMRFamide, stained neurones within an anterior dorsal cluster, and in a posterior cluster. Double labelling with differential Co2+/Ni2+-backfilling and the antiserum 3 (AK141) demonstrated that the large neurones of both clusters belonged to the population of bilaterally projecting neurones (BPNs), including the DUMheart1 neurone. Since the antisera cross-react with BPP and fail to label neurones when preadsorped with BPP or FMRFamide, we conclude that the labelled neurones contain polypeptides of the FMRFamide/BPP-family.  相似文献   

5.
SchistoFLRFamide (PDVDHVFLRF-NH2) is one of the major endogenous neuropeptides of the FMRF-amide family found in the nervous system of the locust,Schistocerca gregaria. To gain insights into the potential physiological roles of this neuropeptide we have examined the distribution of SchistoFLRFamide-like immunoreactivity in the ventral nervous system of adult locusts by use of a newly developed N-terminally specific antibody. SchistoFLRFamide-like immunoreactivity in the ventral nerve cord is found in a subgroup of the neurones that are immunoreactive to an antiserum raised against bovine pancreatic polypeptide (BPP). In the suboesophageal ganglion three groups of cells stain, including one pair of large posterior ventral cells. These cells are the same size, in the same location in the ganglion and have the same branching pattern as a pair of BPP immunoreactive cells known to innervate the heart and retrocerebral glandular complex of the locust. In the thoracic and abdominal ganglia two and three sets of cells, respectively, stain with both the SchistoFLRFamide and BPP antisera. In the abdominal ganglia the immunoreactive cells project via the median nerves to the intensely immunoreactive neurohaemal organs.  相似文献   

6.
Taurine (2-aminoethanesulphonic acid) is reported to interact with the octopaminergic system. The distribution of taurine-like immunoreactivity (-LIR) in relation to octopamine-like immunoreactive dorsal unpaired median (DUM) neurones was investigated with the aim of revealing possible colocalization of these two neuromediators. The specificity of the anti-taurine serum used was demonstrated by dot blot immunoassay and by use of preabsorption controls. There was no crossreactivity with octopamine. The specificity of the octopamine antiserum employed has been described elsewhere. Taurine-LIR could be demonstrated in large dorso-median cells in the suboesophageal and the mesothoracic ganglion as well as in the abdominal ganglia. In addition taurine-LIR is distributed in numerous other regions of the ganglia. A comparison of the immunostaining for taurine and octopamine indicates that several of the taurine-like immunoreactive (-LI) neurones are probably members of the octopamine-immunoreactive DUM cell population. These taurine-LI neurones resemble octopamine-LI DUM cells in soma position and size as well as in the projections of their primary neurites. Colocalization of octopamine-LIR and taurine-LIR within the same neuronal element could be shown by alternate immunostaining of consecutive sections. It is probable that all octopamine-LI DUM neurones also exhibit taurine-LIR, and the possible physiological significance of this coexistence is discussed.  相似文献   

7.
The musculature of the mushroom-shaped accessory gland receives innervation from trunks 5C1 of the phallic nerves, which arise from the posterior part of the terminal abdominal ganglion of the male cockroach Periplaneta americana. Anterograde cobalt filling through trunks 5C1 with the subsequent precipitating procedure has shown the fine innervation of the accessory gland. By retrograde cobalt filling through the same trunks, different types of cells have been mapped in the terminal abdominal ganglion. About 25 dorsal unpaired median (DUM) neurons have been identified among them. About 36 octopamine-like immunoreactive DUM neurons with large somata have been characterized in whole-mount preparations of the terminal abdominal ganglion. The combination of the cobalt-filling technique with immunohistochemical mapping of cells suggests an octopaminergic innervation of the musculature of the accessory gland by DUM neurons.  相似文献   

8.
The cellular localization of the biogenic amines dopamine and serotonin was investigated in the ventral nerve cord of the cricket, Gryllus bimaculatus, using antisera raised against dopamine, -tyrosine hydroxylase and serotonin. Dopamine-(n<-70) and serotonin-immunoreactive (n<-120) neurones showed a segmental arrangement in the ventral nerve cord. Some neuromeres, however, did not contain dopamine-immunoreactive cell bodies. The small number of stained cells allowed complete identification of brain and thoracic cells, including intersegmentally projecting axons and terminal arborizations. Dopamine-like immunostaining was found primarily in plurisegmental interneurones with axons descending to the soma-ipsilateral hemispheres of the thoracic and abdominal ganglia. In contrast, serotonin-immunostaining occurred predominantly in interneurones projecting via soma-contralaterally ascending axons to the thorax and brain. In addition, serotonin-immunoreactivity was also present in efferent cells and afferent elements. Serotonin-immunoreactive, but no dopamine-immunoreactive, varicose fibres were observed on the surface of some peripheral nerves. Varicose endings of both dopamine-and serotonin-immunoreactive neurones occurred in each neuromere and showed overlapping neuropilar projections in dorsal and medial regions of the thoracic ganglia. Ventral associative neuropiles lacked dopamine-like immunostaining but were innervated by serotonin-immunoreactive elements. A colocalization of the two amines was not observed. The topographic representation of neurone types immunoreactive for serotonin and dopamine is discussed with respect to possible modulatory functions of these biogenic amines in the central nervous system of the cricket.  相似文献   

9.
The distribution of neurones immunoreactive to antisera raised against the undecapeptide C-terminal fragment of drosulfakinin II (DrmSKII), Asp-Gln-Phe-Asp-Asp-Tyr(SO3H)-Gly-His-Met-Arg-Phe-NH2, has been studied in the blowfly Calliphora vomitoria. Antisera were preabsorbed with combinations of the parent antigen, the tetrapeptide Phe-Met-Arg-Phe-NH2 and cholecystokinin, the vertebrate sulfated octapeptide (CCK-8), Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2, in order to ensure specificity for the sulfakinin peptides of C. vomitoria (the nonapeptide callisulfakinin I is identical to drosulfakinin I and callisulfakinin II differs from DrmSK II only by the presence of -Glu3-Glu4- in place of -Asp3-Asp4-). Only four pairs of sulfakinin-immunoreactive neurones have been visualised in the entire nervous system. These occur in the brain: two pairs of cells situated medially in the caudo-dorsal region close to the roots of the ocellar nerve and two other pairs at the same level but positioned more laterally. Despite the small number of sulfakinin-immunoreactive cells, there are extensive projections to many areas of neuropile in the brain and the thoracic ganglion. The pathway of the medial sulfakinin cells extends into each of the three thoracic ganglia and a metameric arrangement of sulfakinin neuronal projections is also seen in the abdominal ganglia. Neither the dorsal neural sheath of the thoracic ganglion, nor the abdominal nerves contain sulfakinin-immunoreactive material. These observations suggest that the sulfakinins of the blowfly function as neurotransmitters or neuromodulators. They do not appear to have a direct role in gut physiology, as has been shown by in vitro bioassays for the sulfakinins of orthopterans and blattodeans. In addition to the neurones that display specific sulfakinin immunoreactivity, other cells within the brain and thoracic ganglion are immunoreactive to cholecystokinin/gastrin antisera. There are, therefore, at least two types of dipteran neuropeptides with amino acid sequences that are similar to the vertebrate molecules cholecystokinin and gastrin.  相似文献   

10.
Summary The development of GABA-like immunoreactivity was investigated in embryonic and juvenile locusts using an antibody raised against GABA-protein conjugates. GABA-like immunoreactivity was first detectable in the neuropile of embryonic ganglia at 55% development, and in neuronal somata at 62% development. The total number of immunoreactive somata increased between 62% and 85% embryonic development, and followed an anterio-posterior pattern of expression. At 85% development, the number of immunoreactive somata reached adult levels and no change in number was then seen. In embryonic stages and first and second juvenile instars two dorsal and four ventral groups of somata were labeled in all three thoracic ganglia, whilst in later juvenile instars one of the dorsal groups was visible as a separate entity only in the metathoracic ganglion. These early patterns were modified by alterations in the positions of some of the groups during late embryogenesis and during juvenile development to produce the adult pattern. The results show that the development of GABA expression is similar to that of other neurotransmitters. The characteristics of the development of immunoreactivity indicate that some of these immunoreactive clusters may be derived from clonally related neurones. Finally, we demonstrate the presence of immunoreactive somata and processes in embryos, which correspond to those of identified local and intersegmental interneurones studied in the adult.Abbreviations Ab1–3 first-third abdominal ganglion - CON connective - CI 1–3 common inhibitors 1–3 - CTC tract - DC I–VII dorsal commissures I–VII - DIT dorsal intermediate tract - DMT dorsal median tract - LDT lateral dorsal tract - LF lateral fibres - o, iLVT outer and inner lateral ventral tract - MVT median ventral tract - N1–5 nerves 1–5 - aPT anterior perpendicular tract - PT perpendicular tract - aRT anterior ring tract - R1–5 nerve roots 1–5 - PVC posterior ventral commissure - SMC supra-median commissure - T3 metathoracic neuromere - TT T tract - aVAC anterior ventral association centre - VC I ventral commissure I - d,vVCII dorsal and ventral parts of ventral commissure II - VF ventral fibres - VIT ventral intermediate tract - VLT ventral lateral tract - VMT ventral median tract - (d,v)LAG (dorsal and ventral) lateral anterior group - LDG lateral dorsal group - LVG lateral ventral group - MDG medial dorsal group - MPG medial posterior group - MVG medial ventral group  相似文献   

11.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

12.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

13.
Summary An electron-microscopical study of locust thoracic ganglia reveals that synapses in the neuropily are morphologically heterogeneous. In addition to the conventional dyadic type described frequently in the literature, there is a second type with a complex arrangement of presynaptic dense material and a non-dyadic postsynaptic configuration. Serial-section analysis of these synapses suggests that the presynaptic structures include irregular or curved bars, and small projections.Although the proportion of non-dyadic synapses in the neuropile as a whole is small, a substantial number have been found on the branches of an identified flight motor neurone, labelled intracellularly with metal ions in conjunction with silver intensification. Samples from the arborization of this neurone give some indications of the distribution of non-dyadic synapses on it.The results are discussed in the context of distribution of synapses on other identified locust neurones, and the functional morphology of synapses in other phyla.  相似文献   

14.
Octopaminergic dorsal unpaired median (DUM) neurons of locust thoracic ganglia are important components of motor networks and are divided into various sub-populations. We have examined individually stained metathoracic DUM neurons, their dendritic projection patterns, and their relationship to specific architectural features of the metathoracic ganglion, such as longitudinal tracts, transverse commissures, and well-defined sensory neuropils. The detailed branching patterns of individually characterized DUM neurons of various types were analyzed in vibratome sections in which architectural features were revealed by using antibodies against tubulin and synapsin. Whereas DUM3,4,5 and DUM5 neurons (the group innervating leg and "non-wing-power" muscles) had many ventral and dorsal branches, DUM1 and DUM3,4 neurons (innervating "wing-power" muscles) branched extensively only in dorsal areas. The structure of DUM3 neurons differed markedly from that of the other DUM neurons examined in that they sent branches into dorsal areas and had differently structured side branches that mostly extended laterally. The differences between the branching patterns of these neurons were quantified by using currently available new reconstruction algorithms. These structural differences between the various classes of DUM neurons corresponded to differences in their function and biophysical properties.  相似文献   

15.
In the larval cockroach (Periplaneta americana), knockout of Engrailed (En) in the medial sensory neurons of the cercal sensory system changes their axonal arborization and synaptic specificity. Immunocytochemistry has been used to investigate whether the co-repressor Groucho (Gro; vertebrate homolog: TLE) and the co-factor Extradenticle (Exd; vertebrate homolog: Pbx) are expressed in the cercal system. Gro/TLE is expressed ubiquitously in cell nuclei in the embryo, except for the distal pleuropodia. Gro is expressed in all nuclei of the thoracic and abdominal central nervous system (CNS) of first instar larva, although some neurons express less Gro than others. Cercal sensory neurons express Gro protein, which might therefore act as a co-repressor with En. Exd/Pbx is expressed in the proximal portion of all segmental appendages in the embryo, with the exception of the cerci. In the first instar CNS, Exd protein is expressed in subsets of neurons (including dorsal unpaired medial neurons) in the thoracic ganglia, in the first two abdominal ganglia, and in neuromeres A8–A11 of the terminal ganglion. Exd is absent from the cerci. Because Ultrabithorax/Abdominal-A (Ubx/Abd-A) can substitute for Exd as En co-factors in Drosophila, Ubx/Abd-A immunoreactivity has also been investigated. Ubx/Abd-A immunostaining is present in abdominal segments of the embryo and first instar CNS as far caudal as A7 and faintly in the T3 segment. However, Ubx/Abd-A is absent in the cerci and their neurons. Thus, in contrast to its role in Drosophila segmentation, En does not require the co-factors Exd or Ubx/Abd-A in order to control the synaptic specificity of cockroach sensory neurons.I acknowledge the support of NIH R01 NS45547, NIH-SCORE S06 GM0088224, and RCMI G12 RR03051.  相似文献   

16.
Summary Innervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.  相似文献   

17.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

18.
Summary Tyrosine hydroxylase (TH) immunocytochemistry was utilized to quantify dopaminergic synapses in the inner plexiform layer of the retina of Bufo marinus. Since dopaminergic cells have bistratified dendritic arborisation in the inner plexiform layer, attention was given to the segregation of synapses between the scleral and the vitreal sublaminae. Light-microscopically, a more elaborate dendritic branching was observed in the scleral than in the vitreal sublamina. In contrast, about 55% of synapses occurred in the vitreal one fifth of the inner plexiform layer, 30% in the scleral fifth, and 15% in the intermediate laminae. Input sources and output targets showed only minor quantitative differences between sublaminae 1 and 5. TH-immunoreactive processes were found in presynaptic (62.8%) and postsynaptic (37.2%) positions. Synapses to the stained dendrites derived from bipolar (40.4%) and amacrine (59.6%) cells, whereas outputs from the TH-positive processes were directed to amacrine cells (56.8%) and to small and medium-sized dendrites (35.4%); at least some of these can be considered as ganglion cell dendrites. TH-positive profiles neither formed synapses with each other nor were presynaptic to bipolar cell terminals. Junctional appositions of the immunoreactive profiles were occasionally seen on non-stained amacrine and ganglion cell dendrites in the scleral sublamina of the inner plexiform layer and on optic axons in the optic fibre layer. Although dopaminergic cells are mainly involved in amacrine-amacrine interactions, inputs from bipolar terminals and outputs to ganglion cell dendrites were also substantial, suggestive of a role also in vertical information processing.  相似文献   

19.
Confocal laser-scanning microscopy was used to carry out a comparative study of the immunostaining for three families of neuropeptides, viz., allatostatin-A (AS-A), allatostatin-C (AS-C) and allatotropin (AT), in adult female mosquitoes of Aedes aegypti and Anopheles albimanus. The specific patterns of immunostaining for each of the three peptides were similar in both species. The antisera raised against AT, AS-A, and AS-C revealed intense immunoreactivity in the cells of each protocerebral lobe of the brain and stained cells in each of the ventral ganglia and neuronal projections innervating various thoracic and abdominal tissues. Only the AS-A antiserum labeled immunoreactive endocrine cells in the midgut. The distribution of the peptides supports the concept that they play multiple regulatory roles in both species.This work was supported by NIH grant AI 45545 to F.G.N. and CONACyT G-37186-M to M.H.R.  相似文献   

20.
Summary The distribution of FMRFamide immunoreactive neurones in the ventral nerve cord of the locust, Schistocerca gregaria, is described. These neurones are found only in the suboesophagael and thoracic ganglia, although immunoreactive processes are found in the neuropils of the abdominal ganglia. Many of these neurones also react with an antiserum raised against bovine pancreatic polypeptide (BPP), but this antiserum also reveals another population of cells in the abdominal ganglia. The staining obtained with the BPP antiserum is blocked by preabsorption of the antiserum with FMRFamide; the converse is not true: FMRFamide-like immunoreactivity is not suppressed by preincubation with BPP. These results suggest that there are at least two endogenous peptide antigens in the locust nerve cord: one is found in cells of the suboesophageal and thoracic ganglia, and the other is found in cells of the abdominal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号