首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yue XP  Qin F  Campana MG  Liu DH  Mao CC  Wang XB  Lan XY  Chen H  Lei CZ 《Animal genetics》2012,43(5):624-626
Previous mitochondrial DNA (mtDNA) D‐loop and microsatellite studies have shown that Chinese horses have multiple maternal origins and high genetic diversity. To better characterize maternal genetic origins and diversity of Chinese domestic horses, we conducted a comprehensive analysis of 407 complete 1140 bp sequences of the horse mitochondrially encoded cytochrome b (CYTB) gene, including 323 horses from 13 Chinese indigenous breeds and 84 reference sequences from GenBank. A total of 114 haplotypes were identified, of which 73 appeared among the 13 Chinese horse breeds. The high mitochondrially encoded cytochrome b haplotypic diversity suggests multiple maternal origins in Chinese horses.  相似文献   

2.
To understand the origin and genetic diversity of Italian horses, mitochondrial DNA D‐loop sequences were generated for 163 horses from seven breeds. Sequence analysis of a 480‐bp segment revealed a total of 84 haplotypes with 57 polymorphic sites, indicating multiple maternal origins and high genetic diversity. Comparison of the haplotypes with the equine mtDNA haplotype/haplogroup nomenclature showed a haplogroup distribution in the Italian breeds more similar to that found in the Middle East breeds than in the European breeds, probably due to the economic and cultural relationship with the Middle East in the past centuries.  相似文献   

3.
Manipuri pony is the geographically distant breed of horse from the five recognized horse breeds found in the Indian subcontinent. The phylogenetic relationship of Manipuri pony with the other breeds is unknown. The diversity in the mitochondrial (mt) DNA D-loop region is employed as an important tool to understand the origin and genetic diversification of domestic horses and to examine genetic relationships among breeds around the world. This study was carried out to understand the maternal lineages of Manipuri pony using the 247 bp region of the mtDNA D-loop. The dataset comprised of eleven numbers of self developed sequences of Manipuri pony, 59 and 35 number of retrieved sequences of Indian horse breeds and other worldwide breeds respectively. A total of 35 haplotypes was identified with a high level of genetic diversity in the Indian breeds. A total of seven major mtDNA haplogroups (A–G) was identified in the Indian horse breeds that indicated the abundance of mtDNA diversity and multiple origins of maternal lineages in them. The majority of the studied sequences of Indian breeds (33.3 %) were grouped into haplogroup D and least (3.9 %) in haplogroup E. The Manipuri breed showed the least FST distance (0.03866) with the most diverged Indian breeds and with Thoroughbred horse among the worldwide. This study indicated a close association between Manipuri pony and Thoroughbred.  相似文献   

4.
South American horses constitute a direct remnant of the Iberian horses brought to the New World by the Spanish conquerors. The source of the original horses was Spain, and it is generally assumed that the animals belonged to the Andalusian, Spanish Celtic, Barb or Arabian breeds. In order to establish the relationship between Argentinean and Spanish horses, a portion of the mitochondrial D-loop of 104 animals belonging to nine South American and Spanish breeds was analysed using SSCP and DNA sequencing. The variability found both within and between breeds was very high. There were 61 polymorphic positions, representing 16% of the total sequence obtained. The mean divergence between a pair of sequences was 2.8%. Argentinean Creole horses shared two haplotypes with the Peruvian Paso from Argentina, and the commonest haplotype of the Creole horses is identical to one of the Andalusian horses. Even when there was substantial subdivision between breeds with highly significant Wright's Fixation Index (FST), the parsimony and distance-based phylogenetic analyses failed to show monophyletic groups and there was no clear relationship in the trees between the South American and any of the other horses analysed. Although this result could be interpreted as mixed ancestry of the South American breeds with respect to the Spanish breeds, it is probably indicating the retention of very ancient maternal lineages in the breeds analysed.  相似文献   

5.
The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano) was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences.  相似文献   

6.
The maternal and paternal genetic variation of horse breeds from the Baltic Sea region, including three local Estonian breeds, was assessed and compared with that of Altai and Yakutian horses. In the mtDNA D‐loop region, 72 haplotypes assigned to 20 haplogroups in the nine breeds were detected. In Estonian local breeds, 38 mtDNA haplotypes were found, and five of them were shared by the three breeds. More than 60% of all identified haplotypes were rare. Compared with the Estonian Native and Estonian Heavy Draught breeds, a higher haplotypic diversity was found in the Tori breed (h = 0.969). Moreover, four haplotypes shared among Finnish and Estonian local horse breeds indicated ancient ancestry, and of these, H30 (haplogroup D3) showed global sharing and genetic links between modern Baltic Sea region and Siberian horses, specifically. The studied breed set showed high variability in maternal inheritance and mixed patterns of the international and native breeds of the Siberian and Baltic regions. No variation was found in paternally inherited markers among horse breeds in the Baltic Sea region.  相似文献   

7.
Historical records suggest that horses inhabiting the island of Cheju in Korea are descendants of Mongolian horses introduced in 1276. Other studies, however, suggest that horses may have been present on the island prior to the Mongolian introduction. To determine the origin of the Cheju horses we used a phylogenetic analysis of sequences of the mitochondrial DNA (mtDNA) D-loop region, including tRNA Pro and parts of tRNA thr and tRNA Phe sequences (1102-bp excluding the tandem repeat region). Maximum parsimony and neighbor-joining trees were constructed using sequences determined for seven Cheju, four Mongolian, one Przewalskii and two Chinese Yunnan horses, and published sequences for one Swedish and three Thoroughbred horses. Donkey mtDNA was used as an outgroup. We found that the mtDNA D-loop sequence varies considerably within Mongolian, Cheju and Thoroughbred horse breeds, and that Cheju horses clustered with Mongolian horses as well as with horses from other distantly related breeds. On the basis of these findings we propose that horses on Cheju Island are of mixed origin in their maternal lineage, and that horses may have existed and been traded on the island before the Mongolian introduction.  相似文献   

8.
Kavar T  Habe F  Brem G  Dovc P 《Animal genetics》1999,30(6):423-430
Mitochondrial DNA from 49 Lipizzan horses representing 16 maternal lines from the original stud at Lipica was used for SSCP analysis and DNA sequencing. The SSCP analysis of the 444 bp long fragment of the D-loop region extending from the tRNA(Pro) gene to the central conserved sequence block revealed three distinct groups of SSCP patterns. Both ends of the D-loop region (378 bp and 310 bp), which are considered as the most variable regions within the mammalian mitochondrial DNA, were sequenced. According to 49 polymorphic sites identified within the both parts of the D-loop region, the 16 maternal lines were grouped into 13 distinct mitochondrial haplotypes. The minimal difference between two different haplotype DNA sequences was one nucleotide and the maximal 24 nucleotides. The inheritance of mitochondrial haplotypes was stable and no sequence variation potentially attributable to mutation within maternal line was observed. Considerable DNA sequence similarity of Lipizzan mitochondrial haplotypes with the haplotypes from other breeds was observed. Phylogenetic analysis of the sequence data revealed a dendrogram with three separated branches, supporting the historical data about the multiple origin of the Lipizzan breed.  相似文献   

9.
Hispano‐Breton (HB) is a horse breed with a recent mixed ancestry. It was developed in the 1930s by crossing local mares with Breton draught horses imported from France. Nowadays it is considered to be in a vulnerable situation due to census decline. To genetically characterize the breed and to set up the basis for a conservation programme, we have employed two types of molecular markers: a 347‐bp D‐loop mitochondrial DNA (mtDNA) fragment and 13 microsatellite loci. A representative sample of 53 HB individuals was analysed together with a sample of 40 Pura Raza Española horses for comparison. Both types of markers revealed a high level of genetic diversity in the HB breed, emphasizing the importance of its conservation. The construction of a phylogenetic network with mtDNA sequences including various Iberian breeds and European heavy horses provided an overall picture of the ubiquitous appearance of HB matrilines with respect to other breeds and revealed the singularity of certain HB maternal lineages. Despite the high allelic richness found in HB horses, microsatellite analysis evidenced a certain degree of inbreeding as a consequence of the type of management generally used for local breeds.  相似文献   

10.
Chen FL  Liu Y  Song XY  Hu HY  Xu HB  Zhang XM  Shi JH  Hu J  Shen Y  Lu B  Wang XC  Hu RM 《Mutation research》2006,602(1-2):26-33
OBJECTIVE: Mutations in mtDNA are thought to be responsible for the pathogenesis of maternally inherited diabetes. Here, we report a family with maternally inherited diabetes and deafness whose members did not harbour the mtDNA A3243G mutation, the most frequent point mutation in mitochondrial diabetic patients. This study aimed to investigate a possible other mtDNA mutation and its prevalence in type 2 diabetic patients. METHODS: Height, body weight, waistline, and hip circumference were measured and serum biochemical marks determined in all members of the family. In addition, a 75 g oral glucose tolerance test and electric listening test were conducted in these members. Genomic DNA was prepared from peripheral leukocytes. Direct sequencing of PCR products was used to detect the mtDNA mutation in this family. The prevalence of mtDNA G3421A nucleotide substitutions was investigated by restriction fragment length polymorphism analysis in 1350 unrelated type 2 diabetic patients recruited by random cluster sampling from the central city area of Shanghai, China. RESULTS: (1) A new missense homoplasmic mutation of mtDNA G3421A was found in a maternally inherited diabetic family and existed neither in 1350 unrelated type 2 diabetic patients nor in 50 non-diabetic individuals. (2) The mode of mutation and diabetes transmission was typical maternal inheritance in this family. (3) All diabetic family members were found to have an onset at 35-42 years of age, accompanied by deafness of varying degrees. CONCLUSION: mtDNA G3421A (Val39Ile) found in a family with maternally inherited diabetes and deafness is a novel missense mutation. Whether this is a diabetogenic mutation and its effect on mitochondrial function needs to be further studied.  相似文献   

11.
Despite a number of recent studies that have focused on the origin of domestic horses, genetic relationships between major geographical clusters still remain poorly understood. In this study we analyzed a 296 bp mtDNA fragment from the HVI region of 171 horses representing 11 native Iberian, Barb, and Exmoor breeds to assess the maternal phylogeography of Iberian horses. The mtDNA haplogroup with a CCG motif (nucleotide position 15,494 to 15,496) was the most frequent in Iberian and Barb breeds (0.42 and 0.57, respectively), regardless of geographic location or group of breeds. This finding supports the close genetic relationship between the ancestral mare populations of the Iberian Peninsula and Northern Africa. Phenotypic differences among the Northern and Southern Iberian groups of breeds are not explained by population subdivision based on maternal lineages. Our results also suggest that Northern Iberian ponies--which are phenotypically close to British ponies, especially Exmoor--are the result of an introgression rather than population replacement.  相似文献   

12.
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.  相似文献   

13.
To understand the origin and genetic diversity of Iranian native horses, mitochondrial DNA (mtDNA) D‐loop sequences were generated for 95 horses from five breeds sampled in eight geographical locations in Iran. Sequence analysis of a 247‐bp segment revealed a total of 27 haplotypes with 38 polymorphic sites. Twelve of 19 mtDNA haplogroups were identified in the samples. The most common haplotypes were found within haplogroup X2. Within‐population haplotype and nucleotide diversities of the five breeds ranged from 0.838 ± 0.056 to 0.974 ± 0.022 and 0.011 ± 0.002 to 0.021 ± 0.001 respectively, indicating a relatively high genetic diversity in Iranian horses. The identification of several ancient sequences common between the breeds suggests that the lineage of the majority of Iranian horse breeds is old and obviously originated from a vast number of mares. We found in all native Iranian horse breeds lineages of the haplogroups D and K, which is concordant with the previous findings of Asian origins of these haplogroups. The presence of haplotypes E and K in our study also is consistent with a geographical west–east direction of increasing frequency of these haplotypes and a genetic fusion in Iranian horse breeds.  相似文献   

14.
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.  相似文献   

15.
Jung YH  Han SH  Shin T  Oh MY 《Molecules and cells》2002,14(2):224-230
We determined the nucleotide sequences of the hypervariable D-loop region of mitochondrial DNA (mtDNA) from horse bone (humerus, A.D. 700 to A.D. 800) that was excavated from the Kwakji archaeological site, Jeju, Korea. We compared them with ones from extant horses. We designed three pairs of oligonucleotide primers from the tRNA-Thr and tRNA-Phe gene regions of mtDNA that are highly conserved among many other animal species. We cloned 232, 336, and 644 bp from the horse bone in order to determine the mtDNA D-loop sequence. The sequence was 1,124 bp long; the middle contained 19 tandem repeats of an 8-bp sequence (TGTGCACC) that is specific to equines. The mtDNA D-loop region contained each base (total number, percentage of total) as follows: A (317, 28.20%), C (336, 29.89%), G (169, 15.04%), and T (302, 26.87%). This sequence, like those of other horse populations, was AT rich. Sequence divergence was the lowest (1.71%) between the ancient horse bone and that of the Thoroughbred horse 1. The neighbor-joining and strict consensus tree of three of the most parsimonious trees also suggested that the ancient bone was considerably unrelated to native Jeju horses. The molecular phylogenetic characteristics of the horse bone that was excavated from the Kwakji archaeological site (Jeju, Korea) showed that some horse breeds may have existed on Jeju Island, Korea before Mongolian horses were introduced. The horse bone that was excavated from the Kwakji archaeological site may aid future research on the origin and ancestry of native Jeju horses.  相似文献   

16.
The existence of the Hucul horse on Romanian territory has been documented from the very distant past; today Hucul is a unique breed that is part of the FAO Program for the Preservation of Animal Genetic Resources. We compared Hucul with several primitive European and Asiatic breeds in order to elucidate the origin of these horses. We analyzed a 683-bp mitochondrial DNA (mtDNA) D-loop fragment in a population of Hucul horses and compared the polymorphic sites with sequences from other primitive breeds, including Exmoor, Icelandic Pony, Sorraia, Przewalski Horse, Mongolian Wild Horse, Konik, and Shetland Pony, as well as with Arabian, Akhal Teke and Caspian Pony. The sequences were truncated to 247 bp to accommodate short sequence data for the other species. Eighty horses were analyzed; 35 polymorphic sites representing 33 haplotypes were observed. The mean percentage of polymorphic sites was 14.2% for this mtDNA fragment. A neighbor-joining phylogenetic tree was constructed based on Kimura two-parameter distances and the Network 3.111 software was used for phylogenetic analysis. The Hucul horse was classified separately from all other primitive breeds. It is possible that the Hucul horse is not part of the pony class, as it segregated apart from all primitive pony breeds. We found multiple origins in the maternal lineage of domestic horse breeds and demonstrated the uniqueness of the Hucul breed; its origins remain unclear.  相似文献   

17.
Iberian origins of New World horse breeds   总被引:1,自引:0,他引:1  
Fossil records, archaeological proofs, and historical documents report that horses persisted continuously in the Iberian Peninsula since the Pleistocene and were taken to the American continent (New World) in the 15th century. To investigate the variation within the mitochondrial DNA (mtDNA) control region of Iberian and New World horse breeds, to analyze their relationships, and to test the historical origin of New World horses, a total of 153 samples, representing 30 Iberian and New World breeds, were analyzed by sequencing mtDNA control region fragments. Fifty-four haplotypes were found and assigned to seven haplogroups. Reduced levels of variation found for the Menorquina, Sorraia, and Sulphur Mustang breeds are consistent with experienced bottlenecks or limited number of founders. For all diversity indices, Iberian breeds showed higher diversity values than South American and North American breeds. Although, the results show that the Iberian and New World breeds stem from multiple origins, we present a set of genetic data revealing a high frequency of Iberian haplotypes in New World breeds, which is consistent with historical documentation.  相似文献   

18.
The first hypervariable segment of the human mtDNA control region contains a homopolymeric tract of cytosines between nt 16184 and 16193, interrupted at position 16189 by a thymine, according to the Cambridge reference sequence. A variant commonly found in population screening is a T-to-C transition at nt 16189, resulting in an uninterrupted homopolymeric tract. Direct sequencing of individuals with this variant produces a characteristic blurred sequence in nucleotides beyond the tract. Sequencing clones from these individuals revealed that this is caused by high levels of length heteroplasmy in the homopolymeric tract and low levels of length heteroplasmy in the four adenines following the tract. We have developed a rapid method involving densitometry of sequencing gels to quantify the relative proportions of different length variants present in an individual. We have used this to study the proportions of length variants in individuals from three twin pairs and two maternal lineages. While unrelated individuals usually have different proportions of length variants, all maternally related individuals studied have the same proportions, even if they are only distantly related. It is not obvious how identical heteroplasmic profiles are maintained in maternally related individuals, but some possible mechanisms are suggested.  相似文献   

19.
Mitochondrial DNA (mtDNA) diversity in European and Asian pigs was assessed using 1536 samples representing 45 European and 21 Chinese breeds. Diagnostic nucleotide differences in the cytochrome b (Cytb) gene between the European and Asian mtDNA variants were determined by pyrosequencing as a rapid screening method. Subsequently, 637bp of the hypervariable control region was sequenced to further characterize mtDNA diversity. All sequences belonged to the D1 and D2 clusters of pig mtDNA originating from ancestral wild boar populations in Europe and Asia, respectively. The average frequency of Asian mtDNA haplotypes was 29% across European breeds, but varied from 0 to 100% within individual breeds. A neighbour-joining (NJ) tree of control region sequences showed that European and Asian haplotypes form distinct clusters consistent with the independent domestication of pigs in Asia and Europe. The Asian haplotypes found in the European pigs were identical or closely related to those found in domestic pigs from Southeast China. The star-like pattern detected by network analysis for both the European and Asian haplotypes was consistent with a previous demographic expansion. Mismatch analysis supported this notion and suggested that the expansion was initiated before domestication.  相似文献   

20.
Summary Leukocyte mitochondrial DNA (mtDNA) from 17 Finnish families iwth Leber's hereditary optic neuroretinopathy and 70 maternally unrelated controls as well as skeletal muscle mtDNA from four of the Leber families and three controls was analyzed with 30 restriction enzymes. By this means, over 10% of the nucleotides of mtDNA were screened. No major deletion or insertion was found in any of the mtDNAs studied. The restriction fragment patterns of mtDNA showed no evidence of mtDNA heteroplasmy (mixture of different mtDNA types) in either blood or muscle cells. In all, 24 mtDNA types were observed in the material. In the maternal lines of Leber families, 11 mtDNA types were found, indicating no recent common maternal ancestor for the Finnish Leber families. In spite of several previously unknown polymorphisms, no mutation of mtDNA could be found exclusively in families with Leber's disease. However, a couple of mutations leading to amino acid replacements of mitochondrially encoded proteins were observed in certain Leber families only. These mutations have occurred in genes coding for subunits of NADH dehydrogenase, suggesting that a defect of the respiratory chain complex I may cause Leber's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号