首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an over-representation of neurons in early visual cortical areas that respond most strongly to cardinal (horizontal and vertical) orientations and directions of visual stimuli, and cardinal- and oblique-preferring neurons are reported to have different tuning curves. Collectively, these neuronal anisotropies can explain two commonly-reported phenomena of motion perception – the oblique effect and reference repulsion – but it remains unclear whether neuronal anisotropies can simultaneously account for both perceptual effects. We show in psychophysical experiments that reference repulsion and the oblique effect do not depend on the duration of a moving stimulus, and that brief adaptation to a single direction simultaneously causes a reference repulsion in the orientation domain, and the inverse of the oblique effect in the direction domain. We attempted to link these results to underlying neuronal anisotropies by implementing a large family of neuronal decoding models with parametrically varied levels of anisotropy in neuronal direction-tuning preferences, tuning bandwidths and spiking rates. Surprisingly, no model instantiation was able to satisfactorily explain our perceptual data. We argue that the oblique effect arises from the anisotropic distribution of preferred directions evident in V1 and MT, but that reference repulsion occurs separately, perhaps reflecting a process of categorisation occurring in higher-order cortical areas.  相似文献   

2.
Felsen G  Shen YS  Yao H  Spor G  Li C  Dan Y 《Neuron》2002,36(5):945-954
Receptive field properties of visual cortical neurons depend on the spatiotemporal context within which the stimuli are presented. We have examined the temporal context dependence of cortical orientation tuning using dynamic visual stimuli with rapidly changing orientations. We found that tuning to the orientation of the test stimulus depended on a briefly presented preceding stimulus, with the preferred orientation shifting away from the preceding orientation. Analyses of the spatial-phase dependence of the shift showed that the effect cannot be explained by purely feedforward mechanisms, but can be accounted for by activity-dependent changes in the recurrent interactions between different orientation columns. Thus, short-term plasticity of the intracortical circuit can mediate dynamic modification of orientation tuning, which may be important for efficient visual coding.  相似文献   

3.
Adaptation-induced plasticity of orientation tuning in adult visual cortex   总被引:16,自引:0,他引:16  
Dragoi V  Sharma J  Sur M 《Neuron》2000,28(1):287-298
A key emergent property of the primary visual cortex (V1) is the orientation selectivity of its neurons. The extent to which adult visual cortical neurons can exhibit changes in orientation selectivity is unknown. Here we use single-unit recording and intrinsic signal imaging in V1 of adult cats to demonstrate systematic repulsive shifts in orientation preference following short-term exposure (adaptation) to one stimulus orientation. In contrast to the common view of adaptation as a passive process by which responses around the adapting orientation are reduced, we show that changes in orientation tuning also occur due to response increases at orientations away from the adapting stimulus. Adaptation-induced orientation plasticity is thus an active time-dependent process that involves network interactions and includes both response depression and enhancement.  相似文献   

4.
An illusory contour is an image that is perceived as a contour in the absence of typical contour characteristics, such as a change in luminance or chromaticity across the stimulus. In cats and primates, cells that respond to illusory contours are sparse in cortical area V1, but are found in greater numbers in cortical area V2. We propose a model capable of illusory contour detection that is based on a realistic topographic organization of V1 cells, which reproduces the responses of individual cell types measured experimentally. The model allows us to explain several experimentally observed properties of V2 cells including variability in orientation tuning and inducer spacing preference. As a practical application, the model can be used to estimate the relationship between the severity of a cortical injury in the primary visual cortex and the deterioration of V2 cell responses to real and illusory contours.  相似文献   

5.
Structural and functional substrates of orientation processing in monkeys have been clarified. However, orientation perception in monkeys has not been fully studied. In this study, the cognitive mechanism that controls monkeys' perception of orientation was evaluated. After the monkeys were trained to discriminate between a cardinal and an oblique orientation (e.g., 0 degrees and 30 degrees), their perceptual mechanisms underlying orientation discrimination were tested by using six orientations, ranging from 0 degrees to 150 degrees, including ones used in the discrimination training. Generalization tests showed that the monkeys who were trained with cardinal orientations (e.g., 0 degrees) as positive stimuli generalized their responses to the other cardinal orientation (e.g., 90 degrees). Similarly, the monkeys who were trained with oblique orientations (e.g., 30 degrees) as positive stimuli generalized their responses to all other oblique orientations (e.g., 60 degrees, 120 degrees, and 150 degrees). These findings indicated that the monkeys abstracted the quality of the cardinal/oblique category from the physical features of orientation stimuli although they were not trained to do so. Such an abstraction also suggested a discrepancy between a continuously and orderly arranged cortical map and a discontinuously categorized perception of orientation. The present findings provide insight into the learning-correlated plasticity of cortical orientation preference.  相似文献   

6.
Schummers J  Mariño J  Sur M 《Neuron》2002,36(5):969-978
Neurons in the primary visual cortex (V1) are organized into an orientation map consisting of orientation domains arranged radially around "pinwheel centers" at which the representations of all orientations converge. We have combined optical imaging of intrinsic signals with intracellular recordings to estimate the subthreshold inputs and spike outputs of neurons located near pinwheel centers or in orientation domains. We find that neurons near pinwheel centers have subthreshold responses to all stimulus orientations but spike responses to only a narrow range of orientations. Across the map, the selectivity of inputs covaries with the selectivity of orientations in the local cortical network, while the selectivity of spike outputs does not. Thus, the input-output transformation performed by V1 neurons is powerfully influenced by the local structure of the orientation map.  相似文献   

7.
The principal component analysis of matrices composed of spike numbers generated by visual neurons of cats in response to motion of simple and complex stimuli revealed vector encoding. Responses of detectors of moving dot direction and detectors of oblique line orientation are encoded independently in V1 and V2 cortices by excitation of two cardinal neurons. Each pair of these neurons generates sine and cosine functions. Responses of detectors in the association cortex selective to specific orientation of moving stripes depend on the activity of four cardinal neurons which sum up the excitation incoming from the direction and orientation channels.  相似文献   

8.
In acute experiments with 9 anesthetized and immobilized cats, the relative tangential square of the activated cortical columns in area 17 was mapped by the intrinsic optical signal under stimulation with grids of different orientation. We examined the "oblique effect", i.e. the greater representation of neurons tuned to the vertical and horizontal orientations vs. oblique orientations in the primary visual cortex. The square of the activated parts of the cortex was estimated under different threshold criteria (80, 60 and 40% of the maximum). The "oblique effect" was not observed in our study: the areas of activation of the cortical columns did not differ statistically for two basic vs. oblique orientations. Reasons for the difference between the results of electrophysiological and optical mapping are suggested and possible contributions of the experimental protocol (anesthesia) and individual visual experience in different animals' samples to the origin of these differences are discussed.  相似文献   

9.
朝向选择性是初级视皮层(17区或V1)神经元的基本性质,在图形感知中起着关键作用.同时这些神经元对于持续时间大于100 ms的视觉刺激具有清晰的响应反应(Onset responses)和撤反应(Offset responses).以往的研究只关注响应反应的朝向选择性,而忽视了对撤反应的朝向选择性研究.我们比较了响应与撤反应的朝向调谐性质,大多数细胞的撤反应与响应反应基本上具有相似的最优朝向,而撤反应的朝向调谐宽度有窄于响应反应的趋势,撤反应的最优延迟普遍滞后于响应反应的最优延迟.撤反应的朝向选择性略强于响应反应和具有显著长的反应延迟提示,皮层内的反馈输入可能在形成撤反应的朝向选择性中起着作用.本研究揭示了撤反应的朝向选择性在刺激朝向的连续表征和主体在形状知觉的后期对朝向的精细区分中起着作用.  相似文献   

10.
11.
Yu J  Ferster D 《Neuron》2010,68(6):1187-1201
When the primary visual cortex (V1) is activated by sensory stimulation, what is the temporal correlation between the synaptic inputs to nearby neurons? This question underlies the origin of correlated activity, the mechanism of how visually evoked activity emerges and propagates in cortical circuits, and the relationship between spontaneous and evoked activity. Here, we have recorded membrane potential from pairs of V1 neurons in anesthetized cats and found that visual stimulation suppressed low-frequency membrane potential synchrony (0-10 Hz), and often increased synchrony at high frequencies (20-80 Hz). The increase in high-frequency synchrony occurred for neurons with similar orientation preferences and for neurons with different orientation preferences and occurred for a wide range of stimulus orientations. Thus, while only a subset of neurons spike in response to visual stimulation, a far larger proportion of the circuit is correlated with spiking activity through subthreshold, high-frequency synchronous activity that crosses functional domains.  相似文献   

12.
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map.  相似文献   

13.
The organization of primary visual cortex (V1) into functional maps makes individual cells operate in a variety of contexts. For instance, some neurons lie in regions of fairly homogeneous orientation preference (iso-orientation domains), while others lie in regions with a variety of preferences (e.g., pinwheel centers). We asked whether this diversity in local map structure correlates with the degree of selectivity of spike responses. We used a combination of imaging and electrophysiology to reveal that neurons in regions of homogeneous orientation preference have much sharper tuning. Moreover, in both monkeys and cats, a common principle links the structure of the orientation map, on the spatial scale of dendritic integration, to the degree of selectivity of individual cells. We conclude that neural computation is not invariant across the cortical surface. This finding must factor into future theories of receptive field wiring and map development.  相似文献   

14.
In the primate visual pathway, orientation tuning of neurons is first observed in the primary visual cortex. The LGN cells that comprise the thalamic input to V1 are not orientation tuned, but some V1 neurons are quite selective. Two main classes of theoretical models have been offered to explain orientation selectivity: feedforward models, in which inputs from spatially aligned LGN cells are summed together by one cortical neuron; and feedback models, in which an initial weak orientation bias due to convergent LGN input is sharpened and amplified by intracortical feedback. Recent data on the dynamics of orientation tuning, obtained by a cross-correlation technique, may help to distinguish between these classes of models. To test this possibility, we simulated the measurement of orientation tuning dynamics on various receptive field models, including a simple Hubel-Wiesel type feedforward model: a linear spatiotemporal filter followed by an integrate-and-fire spike generator. The computational study reveals that simple feedforward models may account for some aspects of the experimental data but fail to explain many salient features of orientation tuning dynamics in V1 cells. A simple feedback model of interacting cells is also considered. This model is successful in explaining the appearance of Mexican-hat orientation profiles, but other features of the data continue to be unexplained.  相似文献   

15.
A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression.  相似文献   

16.
Pack CC  Livingstone MS  Duffy KR  Born RT 《Neuron》2003,39(4):671-680
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.  相似文献   

17.
Like most physical maps, recent research has suggested that cognitive maps of familiar environments may have a north-up orientation. We demonstrate that north orientation is not a necessary feature of cognitive maps and instead may arise due to coincidental alignment between cardinal directions and the built and natural environment. Experiment 1 demonstrated that pedestrians have difficulty pointing north while navigating a familiar real-world environment with roads, buildings, and green spaces oriented oblique to cardinal axes. Instead, north estimates tended to be parallel or perpendicular to roads. In Experiment 2, participants did not demonstrate privileged memory access when oriented toward north while making relative direction judgments. Instead, retrieval was fastest and most accurate when orientations were aligned with roads. In sum, cognitive maps are not always oriented north. Rather, in some real-world environments they can be oriented with respect to environment-specific features, serving as convenient reference systems for organizing and using spatial memory.  相似文献   

18.
Orientational tuning of primary visual cortical unit activity was investigated in acute experiments on cats immobilized by a muscle relaxant, by the time slices method. Poststimulus histograms of responses of a neuron to presentation of a flashing bar of light in the center of its receptive field, with different orientations, were plotted; graphs of orientational tuning with respect to mean discharge frequency in consecutive time cuts of the responses with a 10 or 20 msec step were then plotted. Orientational tuning in all cortical neurons studied exhibited considerable dynamic changes in sharpness and preferred orientation. In two thirds of cells an effect of scanning a certain part of the range of orientations was observed, in the form of a successive shift of the maximum of the orientational tuning curve from some preferred orientations to others was discovered. The possible functional significance of spike discharges of visual cortical neurons is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 451–459, September–October, 1981.  相似文献   

19.
Shapley R  Hawken M  Ringach DL 《Neuron》2003,38(5):689-699
To test theories of orientation selectivity in primary visual cortex (V1), we have done experiments to measure the dynamics of orientation tuning of single neurons in the V1 cortex of macaque monkeys. Based on our dynamics results, we propose that a V1 cell's orientation selectivity is generated mainly by both tuned enhancement and global suppression. Enhancement near the preferred orientation is probably caused by feed-forward input from LGN (plus amplification by cortical-cortical interaction). Global suppression could be supplied by cortical inhibition. Additionally, in about 1/3 of V1 neurons (usually the most sharply tuned) there is tuned suppression, centered near the cell's preferred orientation but broader than tuned enhancement. These mechanisms also can explain important features of steady-state selectivity in the V1 neuron population. Furthermore, similar neuronal mechanisms may be used generally throughout the cerebral cortex.  相似文献   

20.
We studied the responses of neurons of the extrastriate cortical area 21b of the cat to changes in orientation of the movements of visual stimuli within the receptive field (RF) of the neuron under study. Our experiments demonstrated that 24 of 108 cells (22%) responded differentially to a certain extent to orientation of the movements of visual stimuli. As a whole, neurons of the area 21b did not demonstrate fine tuning on the optimum angle of orientation. In many cases, neuronal responses to different orientations of the movement of visual stimulus depended significantly on specific parameters of this stimulus (its shape, dimensions, and contrast). Some directionally sensitive neurons responded to a change in orientation of the movement of visual stimuli by modification of the index of directionality. We also studied spatial organization of the RF of neurons with the presentation of stationary visual stimuli. Comparison of the neuronal responses to a change in orientation of the movements of stimuli and to presentation of stationary stimuli showed that the correlation between the orientation sensitivity of the neuron under study and the stationary functional organization of its RF was insignificant. We hypothesize that inhibitory processes and subthreshold influences from a space surrounding the RF play a special role in the formation of the neuronal responses generated in the associative visual cortical regions to visual stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号