首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fossil abundance data on foraminifer communities were collected in marginal marine sediments of the Pliocene Valdelsa succession, in Tuscany, Italy. This succession is organized in a hierarchy of elementary and composite depositional sequences. Multivariate techniques allowed to analyse the dataset and reconstruct gradients in species distributions. Species‐level data available on modern environmental distributions were used to reconstruct Pliocene environmental gradients and to infer absolute palaeodepths and palaeosalinities. Estimates were then compared with the sequence‐stratigraphic interpretation to check for consistency. The high‐resolution stratigraphic framework allowed us to test the stability of foraminifer communities against ecological variations related to high‐frequency glacio‐eustatic cycles. The results confirm that fossil distributions of foraminifer species can be used as a fine tool to detect environmental change and that multivariate techniques allow their interpretation in terms of absolute variations of controlling parameters. Salinity is the main contributor to the sum of depth‐related factors that regulate foraminifer distributions in coastal facies. In the same setting, nutrient levels and the presence of a sea grass cover are responsible for secondary changes in shallow‐water distributions. Below the wave base, however, depth‐related parameters other than salinity explain the largest variations. This study indicates that foraminifer communities are random associations of species that respond individualistically to environmental change.  相似文献   

2.
Global biodiversity is eroding due to anthropogenic causes, such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna, and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom‐up and top‐down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity.  相似文献   

3.
Disturbances induce changes on habitat proprieties that may filter organism''s functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change, especially when more than one trophic level is considered.  相似文献   

4.
The leafhoppers, planthoppers and their allies (collectively known as the Auchenorrhyncha) are presented as a group of insects that are highly appropriate for studying grassland ecology and conservation, evaluating the conservation status of sites and monitoring environmental and habitat change. Semi-natural grasslands typically support dense populations and a wide range of species with diverse ecological strategies. Their numerical dominance in many grasslands means that they have considerable functional significance, both as herbivores and as prey for higher trophic levels. Population and assemblage studies are supported by good ecological knowledge about most species and modern identification keys. Hitherto, most studies have focused on the composition and structure of assemblages and how they are affected by conservation management. However, grasslands support many rare species with small and fragmented populations which deserve conservation attention in their own right, and recent work has started to reflect this. The effects of management on the composition and structure of grassland leafhopper populations and assemblages are described and an assessment is given of the main threats facing individual species and overall diversity. There is a need to synthesise the scattered literature on grassland leafhoppers, to provide a model for how the composition and structure of populations and assemblages respond to major environmental and anthropogenic gradients across large biogeographic areas. Such an analysis could help predict the impact of likely future changes in land use and climate.  相似文献   

5.
  1. Shifts in the fundamental and realised niche of individuals during their ontogeny are ubiquitous in nature, but we know little about what aspects of the niche change and how these changes vary across species within communities. However, this knowledge is essential to predict the dynamics of populations and communities and how they respond to environmental change.
  2. Here I introduce a range of metrics to describe different aspects of shifts in the realised trophic niche of individuals based on stable isotopes. Applying this multi-variate approach to 2,272 individuals from 13 taxonomic and functional distinct species (Amphibia, Hemiptera, Coleoptera, Odonata) sampled in natural pond communities allowed me to: (1) describe and quantify the diversity of trophic niche shift patterns over ontogeny in multi-dimensional space, and (2) identify what aspects of ontogenetic shifts vary across taxa, and functional groups.
  3. Results revealed that species can differ substantially in which aspects of the trophic niche change and how they change over ontogeny. Interestingly, patterns of ontogenetic niche shifts grouped in distinct taxonomic clusters in multi-variate space, including two distinct groups of predators (Hemiptera versus Odonata). Given the differences in traits (especially feeding mode) across groups, this suggests that differences in ontogenetic niche shifts across species could at least partially be explained by variation in traits and functional roles of species.
  4. These results emphasise the importance of a multivariate approach to capture the large diversity of trophic niche shifts patterns possible in natural communities and suggest that differences in ontogenetic niche shifts follow general patterns.
  相似文献   

6.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

7.
Environmental heterogeneity plays a fundamental role in driving species distributions by, for one, fostering niche dimensionality. Within lake ecosystems, species distributions and concordance patterns are driven by both local and regional heterogeneity, though their relative importance across trophic levels has rarely been explored. We developed a statistical framework to compare responses of taxa from different trophic levels to abiotic factors and determine how this affected multi-trophic network structures. In particular, we used multi-species concordance modelling (concordance analysis and RV coefficient) to determine species associations and correlations within and among three trophic levels (phytoplankton, zooplankton and fish communities sampled across 49 southern Québec lakes, covering eight hydrological regions). We then used multiple factor analysis, latent variable modelling and local contributions of sites to beta diversity to assess the relative importance of major environmental gradients in structuring species co-responses and species interaction turnover across the landscape. Our analyses confirmed that concordant species within each trophic level varied jointly or segregated into different pelagic food webs in Québec lakes where important acidification and eutrophication took place. Some keynote species were indicators of different food web compartments and distinguished groups of lakes along multiple environmental niche dimensions. Among the three trophic levels examined, zooplankton depicted the highest proportion of species concordance and appeared to act as a trophic linkage between phytoplankton and fish. Ultimately, the losses or gains in species richness and species interactions were strongly driven by environmental gradients. This study provides for the first time a combined analysis of the effects of environmental heterogeneity on ecological communities belonging to three trophic levels sampled near simultaneously across an 800 km broad lacustrine landscape. The new framework developed in this study has a great potential to better understand the complex response of aquatic ecosystems in a world increasingly affected by multiple, cumulative stressors.  相似文献   

8.
《Journal of Asia》2021,24(4):1244-1250
Elevational gradients in mountains show rapid changes in environmental conditions across a small geographic extent. This results in habitat specialization in animal communities which results in changes in species composition across space. We explore changes in species and functional group composition of ants using the first ever data on the distribution of ants across an elevational gradient in the Eastern Himalaya. Ants were sampled from 600 to 2400 m elevations at 200 m intervals using Winklers and pitfall traps. The sampling yielded 166 species of ants from 10,560 individuals, which were then classified into functional groups. We used redundancy analysis to test the effects of environmental factors (temperature, leaflitter volume, understory vegetation) and spatial predictors on species as well as functional group composition of communities at different elevations. Our results show that species diversity within all functional groups decreases towards higher elevations. The functional group composition of ant communities shows a gradient from high evenness at low elevations to being dominated by opportunist species at higher elevations. Redundancy analyses shows that most of the variation in species as well as functional group composition is driven by spatially structured environmental variation. This is most likely due to the high correlation between temperature and elevation. In summary, the changes in species as well as functional group composition are likely driven by a gradient in climate across the elevation gradient.  相似文献   

9.
The Pinacate region is part of the Gran Desierto, one of the driest deserts in North America. The presence-absence of perennial plant species, together with soil and landform characteristics, were registered in 110 sampling sites within this region. A classification and ordination of plant communities showed soil and landform units to be good predictors of plant variation. Plant distribution and species richness were also strongly related to altitude and rockiness. A Generalised Linear Model was used to fit the response curves of individual species.The environmental factors related with plant distribution are indicators of the water regime within a given site. Plant communities repeat along topographic gradients the large-scale biogeographic variation of the Sonoran Desert. Microphyllous shrubs colonise the drier bajada slopes, while more diverse communities, dominated by cacti and drought-deciduous trees, grow on the wetter pediments and in pockets within rocky soils.  相似文献   

10.
Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine‐scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross‐ecosystem moisture gradient (CEMG) of all four ecosystems considered together. An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.  相似文献   

11.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

12.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   

13.
We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10′s km) and local (10′s m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial variability in environmental conditions.  相似文献   

14.
Understanding the relationships among community structure, vegetation structure and availability of food resources are a key to unravelling the ecological processes that structure biological communities. In this study, we tested (i) whether the composition of small mammal communities changed across gradients in habitat quality in tropical forest fragments, and (ii) whether any observed change could be explained by the functional traits of species. We sampled 24 trapping grids in fragments of semi‐deciduous forest, in each of two 6‐month periods. We considered each trapping grid as a sampling unit, for which we collected three datasets: an environmental matrix (vegetation structure and food resource availability), the abundance of small mammal species (community structure) and a matrix of functional traits (ecological and morphological traits which express tolerance to habitat disturbance and trophic guild). We used an RLQ approach to evaluate the association between traits and environmental gradients. Forest‐specialist and scansorial–arboreal species were associated with more complex habitat that had greater litter and canopy cover and more fallen logs. In relation to trophic guilds, granivore (fruit seeds), insectivorous and omnivorous species were also associated with higher complexity habitat, while frugivores were associated with shrub cover and availability of fruits. We conclude that functional traits (habitat use, use of vertical strata and diet) provide valuable insights into the distribution of small mammals along gradients of habitat quality in tropical forest fragments. We highlight that communities studies in fragmented landscapes should investigate the different components of biodiversity not only in landscape‐scale but also in habitat scale. Abstract in Portuguese is available with online material.  相似文献   

15.
Human‐driven environmental changes can induce marked shifts in the functional structure of biological communities with possible repercussion on important ecosystem functions and services. At the same time it remains unclear to which extent these changes may differently affect various types of organisms. We investigated species richness and community functional structure of species assemblages at the landscape scale (1 km2 plots) for two contrasting model taxa, i.e. plants (producers and sessile organisms) and birds (consumers and mobile organisms), along topography, climate, landscape heterogeneity, and land‐use (agriculture and urbanization) gradients in a densely populated region of Switzerland. Our study revealed that agricultural and urban land uses drove marked shifts in the functional structure of biological communities compared to changes along climate and topography gradients, especially for plants, while for birds these changes were comparable. Agricultural and urban land uses enhanced divergence in traits related to resource use for birds (diet and nesting), growth forms, dispersal, and reproductive traits for plants, while it induced convergence in vegetative plant traits (plant height and leaf dry matter content). These results suggest that contrasting assembly patterns may arise within and across taxonomic groups along the same environmental gradients as result of distinct underlying processes and ‘organism‐specific’ environmental perceptions. Our results further suggest a potential homogenization of biological communities, as well as low functional diversity and redundancy levels of bird assemblages in our human‐dominated study region. This might potentially compromise the maintenance of key ecological processes under future environmental changes.  相似文献   

16.
Laura Gough  Sarah E. Hobbie 《Oikos》2003,103(1):204-216
In arctic Alaska, researchers have manipulated air temperature, light availability, and soil nutrient availability in several tundra communities over the past two decades. These communities responded quite differently to the same manipulations, and species responded individualistically within communities and among sites. For example, moist acidic tundra is primarily nitrogen (N)‐limited, whereas wet sedge tundra is primarily phosphorus (P)‐limited, and the magnitude of growth responses varies across sites within communities. Here we report results of four years of manipulated nutrients (N and/or P) and/or air temperature in an understudied, diverse plant community, moist non‐acidic tussock tundra, in northern Alaska. Our goals were to determine which factors limit above‐ground net primary productivity (ANPP) and biomass, how community composition changes may affect ecosystem attributes, and to compare these results with those from other communities to determine their generality. Although relative abundance of functional groups shifted in several treatments, the only significant change in community‐level ANPP and biomass occurred in plots that received both N and P, driven by an increase in graminoid biomass and production resulting from a positive effect of adding N. There was no difference in community biomass among any other treatments; however, some growth forms and individual species did respond. After four years no one species has come to dominate the treatment plots and species richness has not changed. These results are similar to studies in dry heath, wet sedge, and moist acidic tundra where community biomass had the greatest response to both N and P and warming results were more subtle. Unlike in moist acidic tundra where shrub biomass increased markedly with fertilization, our results suggest that in non‐acidic tundra carbon sequestration in plant biomass will not increase substantially under increased soil nutrient conditions because of the lack of overstory shrub species.  相似文献   

17.
Ecological communities and their response to environmental gradients are increasingly being described by various measures of trait composition. Aggregated trait averages (i.e. averages of trait values of constituent species, weighted by species proportions) are popular indices reflecting the functional characteristics of locally dominant species. Because the variation of these indices along environmental gradients can be caused by both species turnover and intraspecific trait variability, it is necessary to disentangle the role of both components to community variability. For quantitative traits, trait averages can be calculated from ‘fixed’ trait values (i.e. a single mean trait value for individual species used for all habitats where the species is found) or trait values for individual species specific to each plot, or habitat, where the species is found. Changes in fixed averages across environments reflect species turnover, while changes in specific traits reflect both species turnover and within‐species variability in traits. Here we suggest a practical method (accompanied by a set of R functions) that, by combining ‘fixed’ and ‘specific averages’, disentangles the effect of species turnover, intraspecific trait variability, and their covariation. These effects can be further decomposed into parts ascribed to individual explanatory variables (i.e. treatments or environmental gradients considered). The method is illustrated with a case study from a factorial mowing and fertilization experiment in a meadow in South Bohemia. Results show that the variability decomposition differs markedly among traits studied (height, Specific Leaf Area, Leaf N, P, C concentrations, leaf and stem dry matter content), both according to the relative importance of species turnover and intraspecific variability, and also according to their response to experimental factors. Both the effect of intraspecific trait variability and species turnover must be taken into account when assessing the functional role of community trait structure. Neglecting intraspecific trait variability across habitats often results in underestimating the response of communities to environmental changes.  相似文献   

18.
Trait-based approaches have become increasingly important and valuable in understanding phytoplankton community assembly and composition. These approaches allow for comparisons between water bodies with different species composition. We hypothesize that similar changes in environmental conditions lead to similar responses with regard to functional traits of phytoplankton communities, regardless of trophic state or species composition. We studied the phytoplankton (species composition, community trait mean and diversity) of five reservoirs in Brazil along a trophic gradient from ultra-oligotrophic to meso-eutrophic. Samples at two seasons (summer/rainy and winter/dry) with a horizontal and vertical resolution were taken. Using multivariate analysis, the five reservoirs separated, despite some overlap, according to their environmental variables (mainly total phosphorus, conductivity, pH, chlorophyll a). However, between the seasonal periods, the reservoirs shifted in a similar direction in the multi-dimensional space. The seasonal response of the overall phytoplankton community trait mean differed between the ultra-oligotrophic and the other reservoirs, with three reservoirs exhibiting a very similar community trait mean despite considerable differences in species composition. Within-season differences between different water layers were low. The functional diversity was also unrelated to the trophic state of the reservoirs. Thus, seasonal environmental changes had strong influence on the functional characteristics of the phytoplankton community in reservoirs with distinct trophic condition and species composition. These results demonstrate that an ataxonomic trait-based approach is a relevant tool for comparative studies in phytoplankton ecology.  相似文献   

19.
Predators can indirectly benefit prey populations by suppressing mid‐trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000‐km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.  相似文献   

20.
Understanding which factors and rules govern the process of assembly in communities constitutes one of the main challenges of plant community ecology. The presence of certain functional strategies along broad environmental gradients can help to understand the patterns observed in community assembly and the filtering mechanisms that take place. We used a trait‐based approach, quantifying variations in aboveground (leaf and stem) and belowground (root) functional traits along environmental gradients in Mediterranean forest communities (south Spain). We proposed a new practical method to quantify the relative importance of species turnover (distinguishing between species occurrence and abundance) versus intraspecific variation, which allowed us to better understand the assemblage rules of these plant communities along environmental gradients. Our results showed that the functional structure of the studied plant communities was highly determined by soil environment. Results from our modelling approach based on maximum likelihood estimators showed a predominant influence of soil water storage on most of the community functional traits. We found that changes in community functional structure along environmental gradients were mainly promoted by species turnover rather than by intraspecific variability. Specifically, our new method of variance decomposition demonstrated that between‐site trait variation was the result of changes in species occurrence rather than in the abundance of certain dominant species. In conclusion, this study showed that water availability promoted the predominance of specific trait values (both in above and belowground fractions) associated to a resource acquisition or conservation strategy. In addition, we provided evidence that changes on community functional structure along the environmental gradient were mainly promoted by a process of species replacement, which represent a crucial step towards a more general understanding of the relative importance of intraspecific versus interspecific trait variation in these woody Mediterranean communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号