首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loss of regulating agents such as parasites is among the most important changes in biotic interactions experienced by populations established in newly colonized areas. Under a relaxed parasite pressure, individuals investing less in costly immune mechanisms might experience a selective advantage and become successful colonizers as they re‐allocate resources to other fitness‐related traits. Accordingly, a refinement of the evolution of increased competitive ability (EICA) hypothesis proposed that immunity of invasive populations has evolved toward a reduced investment in innate immunity, the most costly component of immunity, and an increased humoral immunity that is less costly. Biogeographical approaches comparing populations between native and expansion ranges are particularly relevant in exploring this issue, but remain very scarce. We conducted a biogeographical comparison between populations of Spectacled Thrush (Turdus nudigenis) from the native area (South America) and from the expansion range (Caribbean islands). First, we compared haemosporidian prevalence and circulating haptoglobin (an acute‐phase protein produced during inflammation). Second, we challenged captive birds from both ranges with Escherichia coli lipopolysaccharides (LPS) and measured postchallenge haptoglobin production and body mass change. Birds from the expansion range showed lower haemosporidian prevalence and lower levels of haptoglobin than birds from the native range. In addition, the inflammation elicited by LPS injection and its associated cost in terms of body mass loss were lower in birds from the expansion range than in birds from the native range. In accordance with the enemy release hypothesis, our results suggest that range expansion is associated with a reduced infection risk. Our study also supports the hypothesis that individuals from newly established populations have evolved mechanisms to dampen the inflammatory response and are in accordance with one prediction of the refined EICA hypothesis, proposed to understand biological invasions.  相似文献   

2.
Caño L  Escarré J  Vrieling K  Sans FX 《Oecologia》2009,159(1):95-106
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between: (1) plants of the invasive Senecio inaequidens and Senecio pterophorus derived from populations in the introduced range (Europe) and plants of three indigenous species (Senecio jacobea, Senecio vulgaris and Senecio malacitanus) from populations in Europe; (2) plants of the invasive S. inaequidens and S. pterophorus from populations in the introduced range (Europe) and from populations in the native range (South Africa). We did not find a clear pattern of preference for indigenous or alien species of Senecio. However, we found that European invasive populations of S. inaequidens and S. pterophorus were less palatable than South African native populations. Moreover, in contrast to the predictions of the EICA hypothesis, the invasive genotypes of both species also showed a higher total concentration of pyrrolizidine alkaloids, and in the case of S. inaequidens we also found higher growth than in native genotypes. Our results are discussed with respect to the refinement of the EICA hypothesis that takes into account the difference between specialist and generalist herbivores and between qualitative and quantitative defences. We conclude that invasive populations of S. inaequidens and S. pterophorus are less palatable than native populations, suggesting that genetic differentiation associated with founding may occur and contribute to the plants’ invasion success by selecting the best-defended genotypes in the introduced range.  相似文献   

3.
The enemy release hypothesis is often used to explain the success of non‐native species invasions. Growing evidence indicates that parasite or pathogen species richness increases over time in invasive non‐native species; however, this increase should not directly translate into release from enemy pressure as infection intensity of parasites (number of parasites per host) has a more profound impact on host fitness. The changes in intensity of parasitic infections in invasive non‐native species have not yet been thoroughly analysed in newly colonized areas. The goal of this study was to determine whether gastrointestinal parasite (nematode and trematode) infection intensity has increased with time since the populations of American mink Neovison vison were established and how host demographic parameters affect infection intensity. We tested the enemy release hypothesis by substituting space for time, evaluating parasite abundance in American mink at six sites along a chronosequence of mink invasion history. Nematode and trematode abundance increased with time since mink introduction, from a few parasites on average per mink after 16 yr, to 200–250 parasites per mink after 34 yr. The rate of increase in parasite abundance varied among demographic groups of mink (sex and age). Both nematodes and trematodes were more abundant in males than in females, and in subadults than in adults. Higher nematode abundance negatively affected body condition of mink. Our results provide evidence that non‐native species are released from enemy pressure only in the first phase of invasion, and that infection is modulated by host demographics and season. These results contribute to the evaluation of the long‐term patterns of parasite accumulation in invasive non‐native species after their colonization of new territories.  相似文献   

4.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

5.
Many introduced animals harbor fewer parasites than native ones. This “enemy release” can select for individuals that bias resources away from parasite resistance traits, including immune functions, and towards traits that enhance success in new areas. One vertebrate example that supports this hypothesis involves house sparrows (Passer domesticus) and Eurasian tree sparrows (Passer montanus) introduced to St. Louis, MO, USA, over 150 years ago. Since ca. 1850, house sparrows have colonized most of North America whereas tree sparrows have expanded little from the area of introduction. The more successful house sparrows now exhibit weaker inflammatory responses than the less successful tree sparrows, which supports the possibility that diminished investments in immune defense may have been conducive to the initial colonization by the more successful species. The goal of the present study was to determine whether damped inflammation generally facilitates invasion by comparing inflammatory markers between house sparrows invading Kenya and a native congener. House sparrows arrived in Mombasa, Kenya, about 50 years ago whereas rufous sparrows (Passer ruficinctus) are native but ecologically similar. We predicted that if inflammation mediated invasion success, Kenyan house sparrows would mount weaker inflammatory responses than the native species. Complete Freund’s adjuvant (CFA), a strong inflammatory stimulus, increased body mass in house sparrows, a result unprecedented in any other vertebrate. Haptoglobin (Hp), a multi-functional acute phase protein, was elevated by CFA in both species but rufous sparrows maintained more Hp than house sparrows irrespective of treatment. Lysozyme, a broadly effective antimicrobial enzyme, was reduced by CFA in both species, but not differentially so. Corticosterone was unaffected by CFA in either species, but elevated in both relative to free-living individuals.  相似文献   

6.
  1. The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.
  2. In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.
  3. Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.
  4. When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.
  5. Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
  相似文献   

7.
The passenger, driver, and opportunist models are conceptual models of the invasion process used to describe alternative invasion scenarios. In the passenger model, both the invasive species and native community respond independently to environmental changes. In the driver model, changes to the native community are driven by the invasive species, while in the opportunist model invasion occurs in response to changes in the native community. In any given invasion scenario, however, it is possible that the relationships between the invasive, the native community, and the environment correspond to some combination of these invasion models acting simultaneously. We study invasion by Poa pratensis in a grassland in Alberta, Canada. Poa pratensis is a non‐native plant implicated with loss of plant diversity in the region. In a three year field experiment, we manipulate the environment though defoliation, water addition, and nitrogen addition, and measure responses of P. pratensis cover, and cover and richness of the native community. We use structural equation modelling to describe the relationships between the invasive, the native community, and the environmental changes, and then interpret these relationships using the three invasion models. We found that P. pratensis predominantly invaded via the driver model, with subsequent reductions in native plant cover, but not in species richness. Positive effects of the environmental changes on P. pratensis also aided its ability to drive native cover. As well, we found some involvement of the opportunist model, through a negative relationship between the native community and the invasive. As invasion mainly proceeded via the driver model, management actions to limit invasion should focus on efforts to control abundance of P. pratensis itself.  相似文献   

8.
9.
The evolution of increased competitive ability (EICA) hypothesis provides a compelling explanation for the success of invasive species. It contends that because alien plants have escaped their coevolved natural enemies, selection pressures favor a diversion of resources from herbivore defense to traits that confer increased competitive ability. Here, we provide evidence for EICA in the noxious grassland invader Lespedeza cuneata, by comparing the ancestral genotype introduced to North America in 1930 with modern‐day invasive (North American) and native (Japanese) genotypes. We found that the invasive genotype was a better competitor than either the native or the ancestral genotype. Further, the invasive genotype exhibited greater induced resistance but lower constitutive resistance than the ancestral and native genotypes. Our results suggest that selection has played a pivotal role in shaping this invasive plant species into a more aggressive, but less constitutively defended competitor.  相似文献   

10.
The evolution of increased competitive ability (EICA) hypothesis proposes that invasive species evolve decreased defense and increased competitive ability following natural enemy release. Previous studies have found evidence both for and against EICA. The resource-enemy release hypothesis (R-ERH) suggests that fast-growing species may experience stronger enemy release than slow-growing species. On the basis of R-ERH, the prediction of EICA will be held true for slow-growing genotypes, i.e., the slow-growing genotypes from the introduced range will be less resistant to herbivory and grow faster than those from the home range; while the EICA will not be held for fast-growing genotypes, i.e., there will be no significant differences in growth and defense traits between the introduced and native fast-growing genotypes. We tested these predictions preliminarily using five populations of the invasive plant Alternanthera philoxeroides. This species has two varieties in its home range, which showed a distinct growth-defense strategy: the northern A. p. var. acutifolia (Apa) had higher growth rate but lower resistance, while the southern A. p. var. obtusifolia (Apo) had lower growth rate but higher resistance level. Our results suggest that the EICA hypothesis is consistent with the slow-growing Apo, but not with the fast-growing Apa. We suggest that evolutionary changes in growth or resistance following enemy release are influenced by variation in growth rate within an invasive alien plant. These findings have important implications for the EICA hypothesis, and may partially explain why previous studies have found evidence both for and against EICA.  相似文献   

11.
Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta‐analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.  相似文献   

12.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

13.
14.
Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat.  相似文献   

15.
Parasite fauna of round goby Neogobius melanostomus (Pallas, 1814) in the Danube River was investigated in both its native range (two sites in the Bulgarian stretch of the Danube) and non‐native range of distribution (Croatian, Slovak and Austrian stretches) during 2005 and 2006. The aim was to identify possible changes in parasite communities associated with the introduction of a host into the new environment. A total of 29 metazoan parasite species were found to parasitize round goby in the Danube River; twelve of these parasite species were found in both the native and non‐native range of distribution. Introduction of a novel parasite species to the non‐native range via the round goby was not found. Eight parasite species occurred only in the native range and nine species only in the non‐native range of the round goby distribution. Losses of native parasite species in non‐native round goby populations and/or acquiring of novel parasite species in a new environment were not significant. Thirteen parasite taxa were recorded for the first time in round gobies. Three parasite taxa (Diplostomum spp., Pomphorhynchus laevis and Raphidascaris acus) were found in high prevalence and abundance at each sampling site in both the native and non‐native range. Parasite species diversity was assessed for each sampling site and season using three diversity indices (the Shannon, Simpson and Equitability indices), with the highest same‐season values found in a non‐native site in Slovakia (1.38, 0.69 and 0.60, respectively) and the lowest in a native site in Bulgaria (0.28, 0.12 and 0.14, respectively). Species diversity was higher in both non‐native round goby populations (Slovak and Austrian) compared to native Bulgarian populations. However, diversity indices values varied among almost all sampling sites.  相似文献   

16.
The success of introduced species is often attributed to release from co-evolved enemies in the new range and a subsequent decreased allocation to defense (EICA), but these hypotheses have rarely been evaluated for systems with low host-specificity of enemies. Here, we compare herbivore utilization of the brown seaweed, Fucus evanescens, and its coexisting competitors both in its native and new ranges, to test certain predictions derived from these hypotheses in a system dominated by generalist herbivores. While F. evanescens was shown to be a preferred host in its native range, invading populations supported a less diverse herbivore fauna and it was less preferred in laboratory choice experiments with important herbivores, when compared to co-occurring seaweeds. These results are consistent with the enemy release hypothesis, despite the fact that the herbivore communities in both regions were mainly composed of generalist species. However, in contrast to the prediction of EICA, analysis of anti-grazing compounds indicated a higher allocation to defense in introduced compared to native F. evanescens. The results suggest that the invader is subjected to less intense enemy control in the new range, but that this is due to an increased allocation to defense rather than release from specialized herbivores. This indicates that increased resistance to herbivory might be an important strategy for invasion success in systems dominated by generalist herbivores.  相似文献   

17.
The processes underlying plant invasions have been the subject of much ecological research. Understanding mechanisms of plant invasions are difficult to elucidate from observations, yet are crucial for ecological management of invasions. Hieracium lepidulum, an asteraceous invader in New Zealand, is a species for which several explanatory mechanisms can be raised. Alternative mechanisms, including competitive dominance, disturbance of resident vegetation allowing competitive release or nutrient resource limitation reducing competition with the invader are raised to explain invasion. We tested these hypotheses in two field experiments which manipulated competitive, disturbance and nutrient environments in pre‐invasion and post‐invasion vegetation. H. lepidulum and resident responses to environmental treatments were measured to allow interpretation of underlying mechanisms of establishment and persistence. We found that H. lepidulum differed in functional response profile from native species. We also found that other exotic invaders at the sites were functionally different to H. lepidulum in their responses. These data support the hypothesis that different invaders use different invasion mechanisms from one another. These data also suggest that functional differentiation between invaders and native resident vegetation may be an important contributing factor allowing invasion. H. lepidulum appeared to have little direct competitive effect on post‐invasion vegetation, suggesting that competition was not a dominant mechanism maintaining its persistence. There was weak support for disturbance allowing initial establishment of H. lepidulum in pre‐invasion vegetation, but disturbance did not lead to invader dominance. Strong support for nutrient limitation of resident species was provided by the rapid competitive responses with added nutrients despite presence of H. lepidulum. Rapid competitive suppression of H. lepidulum once nutrient limitation was alleviated suggests that nutrient limitation may be an important process allowing the invader to dominate. Possible roles of historical site degradation and/or invader‐induced soil chemical/microbial changes in nutrient availability are discussed.  相似文献   

18.
The evolution of increased competitive ability (EICA) hypothesis states that plants introduced into a new range experience reduced herbivory, which in turn results in a shift in resource allocation from herbivore defense to growth. If genotypes of an invasive plant species from its native and introduced ranges are grown under common conditions, introduced genotypes are expected to grow more vigorously than conspecific native genotypes. We tested predictions of the EICA hypothesis with the invasive species Lepidium draba by comparing the growth of genotypes from its native European and introduced western US ranges under common conditions. To test potential differences in competitive ability, we grew L. draba from both continents with either Festuca idahoensis, a weak competitor native to North America, or Festuca ovina, a strong competitor native to Europe. Contrary to EICA predictions, there were no differences in the performance of native and introduced L. draba, independent of whether plants were grown with F. idahoensis, F. ovina, or alone. The strong competitor, F. ovina impaired the growth of L. draba more than the weak competitor F. idahoensis and conversely, F. idahoensis was generally more impaired by L. draba than was F. ovina. While the native F. idahoensis was equally affected by L. draba regardless of range, F. ovina was not: US L. draba had a stronger negative effect on F. ovina growth than European L. draba. Our data suggest that the EICA hypothesis is not suitable to explain the invasion success of L. draba in the US. Instead, the greater competitive effect of L. draba on the North American F. idahoensis and the asymmetric competitive effect of L draba from different origins on F. ovina may indicate superior competitive ability for resources, or the presence of allelopathic traits in L. draba, to which plant species in non-native ranges are maladapted.  相似文献   

19.
Abstract Plant invasions create novel plant–insect interactions. The EICA (evolution of increased competitive ability) hypothesis proposes that invasive plants will reallocate resources from defense to growth and/or reproduction because they have escaped from their co‐evolved insect natural enemies. Testing multiple herbivory by monophagous and oligophagous herbivores and simultaneous measurement of various plant traits will provide new insights into the evolutionary change of invasive plants. In this context, we conducted a common garden experiment to compare plant growth and reproduction, chemical and physical defense, and plant responses to herbivory by different types of herbivores between invasive North American populations and native East Asian populations of mile‐a‐minute weed, Persicaria perfoliata. We found that invasive mile‐a‐minute exhibited lower biomass, flowered earlier and had greater reproductive output than plants from the native range. Compared with native populations, plants from invasive populations had lower tannin content, but exhibited higher prickle density on nodes and leaves. Thus our results partially support the EICA hypothesis. When exposed to the monophagous insect, Rhinoncomimus latipes and the oligophagous insects, Gallerucida grisescens and Smaragdina nigrifrons, more damage by herbivory was found on invasive plants than on natives. R. latipes, G. grisescens and S. nigrifrons had strong, moderate and weak impacts on the growth and reproduction of mile‐a‐minute, respectively. The results indicate that mile‐a‐minute may have evolved a higher reproductive capacity in the introduced range, and this along with a lack of oligophagous and monophagous herbivores in the new range may have contributed to its invasiveness in North America.  相似文献   

20.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号