首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long‐term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence‐based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long‐term ecological studies to resource managers, policy makers and the general public. Long‐term research will be especially important for tackling large‐scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long‐term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long‐term ecological studies do not become a long‐term deficiency. It is important to maintain publishing outlets for empirical field‐based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long‐term data sets. Funding schemes must be re‐crafted to emphasize collaborative partnerships between field‐based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.  相似文献   

3.
Collaboration between modellers and experimentalists is essential in ecological research, however, different obstacles linking both camps often hinder scientific progress. In this commentary, we discuss several issues of the current state of affairs in this research loop. Backed by an online survey amongst fellow ecologists, modellers and experimentalists alike, we identify two major areas that need to be mended. Firstly, differences in language and jargon lead to a lack of exchange of ideas and to unrealistic mutual expectations. And secondly, constraint data sharing, accessibility and quality limit the usage of empirical data and thereby the impact of ecological studies. We discuss ways to advance collaboration; how to improve communication and the design of experiments; and the sharing of data. We hope to start a much‐needed conversation between modellers and experimentalists, to further future research collaboration and to increase the impact of single ecological studies alike.  相似文献   

4.
Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand ecological phenomena. We argue that this is a missed opportunity and that the selection and systematic collection of trait data throughout the fungal kingdom will reap major benefits in ecological and evolutionary understanding of fungi. To develop our argument, we first employ plant trait examples to show the power of trait-based approaches in understanding ecological phenomena such as identifying species allocation resources patterns, inferring community assembly and understanding diversity–ecosystem functioning relationships. Second, we discuss ecologically relevant traits in fungi that could be used to answer such ecological phenomena and can be measured on a large proportion of the fungal kingdom. Third, we identify major challenges and opportunities for widespread, coordinated collection and sharing of fungal trait data. The view that we propose has the potential to allow mycologists to contribute considerably more influential studies in the area of fungal ecology and evolution, as has been demonstrated by comparable earlier efforts by plant ecologists. This represents a change of paradigm, from community profiling efforts through massive sequencing tools, to a more mechanistic understanding of fungal ecology.  相似文献   

5.
Two fundamental axes – space and time – shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change – the effective manipulation of time by humans – has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non‐stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation.  相似文献   

6.
Ecology has a key role in our understanding of the benefits that humans obtain from ecosystems (i.e. ecosystem services). Ecology can also contribute to developing environmentally sound technologies, markets for ecosystem services and approaches to decision-making that account for the changing relationship between humans and ecosystems. These contributions involve basic ecological research on, for example, the resilience of ecosystem services or relationships of ecosystem change to natural disasters. Much of the necessary work involves interdisciplinary collaboration among ecologists, social scientists and decision makers. As we discuss here, ecology should help formulate positive, plausible visions for relationships of society and ecosystems that can potentially sustain ecosystem services for long periods of time.  相似文献   

7.
Climate change, species-area curves and the extinction crisis   总被引:1,自引:0,他引:1  
An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.  相似文献   

8.
The global scale and rapidity of environmental change is challenging ecologists to reimagine their theoretical principles and management practices. Increasingly, historical ecological conditions are inadequate targets for restoration ecology, geographically circumscribed nature reserves are incapable of protecting all biodiversity, and the precautionary principle applied to management interventions no longer ensures avoidance of ecological harm. In addition, human responses to global environmental changes, such as migration, building of protective infrastructures, and land use change, are having their own negative environmental impacts. We use examples from wildlands, urban, and degraded environments, as well as marine and freshwater ecosystems, to show that human adaptation responses to rapid ecological change can be explicitly designed to benefit biodiversity. This approach, which we call “renewal ecology,” is based on acceptance that environmental change will have transformative effects on coupled human and natural systems and recognizes the need to harmonize biodiversity with human infrastructure, for the benefit of both.  相似文献   

9.
ABSTRACT The controversy over the use of null hypothesis statistical testing (NHST) has persisted for decades, yet NHST remains the most widely used statistical approach in wildlife sciences and ecology. A disconnect exists between those opposing NHST and many wildlife scientists and ecologists who conduct and publish research. This disconnect causes confusion and frustration on the part of students. We, as students, offer our perspective on how this issue may be addressed. Our objective is to encourage academic institutions and advisors of undergraduate and graduate students to introduce students to various statistical approaches so we can make well-informed decisions on the appropriate use of statistical tools in wildlife and ecological research projects. We propose an academic course that introduces students to various statistical approaches (e.g., Bayesian, frequentist, Fisherian, information theory) to build a foundation for critical thinking in applying statistics. We encourage academic advisors to become familiar with the statistical approaches available to wildlife scientists and ecologists and thus decrease bias towards one approach. Null hypothesis statistical testing is likely to persist as the most common statistical analysis tool in wildlife science until academic institutions and student advisors change their approach and emphasize a wider range of statistical methods.  相似文献   

10.
Scheffer  Marten  Beets  Jeroen 《Hydrobiologia》1994,275(1):115-124
After the disappointing experiences with complex ecological models in the days of the International Biological Program, dynamic modelling has never really recovered a convincing niche in applied ecology. Simple generic models have become the tool par excellence for the development of theory. However, the popularity of these abstract theoretical models among practical ecologists is marginal. It is argued that the antagonism against such models is largely due to a misconception about their possible role in the process of unravelling the functioning of ecological communities. We discuss the pitfalls of analyzing the driving causal relationships in real world ecosystems, and evaluate role for minimal models in this context.  相似文献   

11.
Has the science of ecology fulfilled the promises made by the originators of ecological science at the start of the last century? What should ecology achieve? Have good policies for environmental management flowed out of ecological science? These important questions are rarely discussed by ecologists working on detailed studies of individual systems. Until we decide what we wish to achieve as ecologists we cannot define progress toward those goals. Ecologists desire to achieve an understanding of how the natural world operates, how humans have modified the natural world, and how to alleviate problems arising from human actions. Ecologists have made impressive gains over the past century in achieving these goals, but this progress has been uneven. Some sub-disciplines of ecology are well developed empirically and theoretically, while others languish for reasons that are not always clear. Fundamental problems can be lost to view as ecologists fiddle with unimportant pseudo-problems. Bandwagons develop and disappear with limited success in addressing problems. The public demands progress from all the sciences, and as time moves along and problems get worse, more rapid progress is demanded. The result for ecology has too often been poor, short-term science and poor management decisions. But since the science is rarely repeated and the management results may be a generation or two down the line, it is difficult for the public or for scientists to decide how good or bad the scientific advice has been. In ecology over the past 100 years we have made solid achievements in behavioural ecology, population dynamics, and ecological methods, we have made some progress in understanding community and ecosystem dynamics, but we have made less useful progress in developing theoretical ecology, landscape ecology, and natural resource management. The key to increasing progress is to adopt a systems approach with explicit hypotheses, theoretical models, and field experiments on a scale defined by the problem. With continuous feedback between problems, possible solutions, relevant theory and experimental data we can achieve our scientific goals.  相似文献   

12.
Relating restoration ecology to policy is one of the aims of the Society for Ecological Restoration and its journal Restoration Ecology. As an interdisciplinary team of researchers in both ecological science and political science, we have struggled with how policy‐relevant language is and could be deployed in restoration ecology. Using language in scientific publications that resonates with overarching policy questions may facilitate linkages between researcher investigations and decision‐makers' concerns on all levels. Climate change is the most important environmental problem of our time and to provide policymakers with new relevant knowledge on this problem is of outmost importance. To determine whether or not policy‐specific language was being included in restoration ecology science, we surveyed the field of restoration ecology from 2008 to 2010, identifying 1,029 articles, which we further examined for the inclusion of climate change as a key element of the research. We found that of the 58 articles with “climate change” or “global warming” in the abstract, only 3 identified specific policies relevant to the research results. We believe that restoration ecologists are failing to include themselves in policy formation and implementation of issues such as climate change within journals focused on restoration ecology. We suggest that more explicit reference to policies and terminology recognizable to policymakers might enhance the impact of restoration ecology on decision‐making processes.  相似文献   

13.
Synthesis Prediction and management of species responses to climate change is an urgent but relatively young research field. Therefore, climate change ecology must by necessity borrow from other fields. Invasion ecology is particularly well‐suited to informing climate change ecology because both invasion ecology and climate change ecology address the trajectories of rapidly changing novel systems. Here we outline the broad range of active research questions in climate change ecology where research from invasion ecology can stimulate advances. We present ideas for how concepts, case‐studies and methodology from invasion ecology can be adapted to improve prediction and management of species responses to climate change. A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: 1) how will species distributions respond to climate change? 2) how will species movement affect recipient ecosystems? And 3) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait‐based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life‐history and demography, the stage in the colonisation process (e.g. spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of ‘when to intervene?‘ and ‘what to do?‘ which call for a better understanding of the ecological processes and social values associated with changing ecosystems.  相似文献   

14.
Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time-an approach we call 'ecometrics'. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.  相似文献   

15.
Restoration ecology is a deepening and diversifying field with current research incorporating multiple disciplines and infusing long‐standing ideas with fresh perspectives. We present a list of 10 recent pivotal papers exemplifying new directions in ecological restoration that were selected by students in a cross‐disciplinary graduate seminar at the University of California, Berkeley. We highlight research that applies ecological theory to improve restoration practice in the context of global change (e.g. climate modeling, evaluation of novel ecosystems) and discuss remaining knowledge gaps. We also discuss papers that recognize the social context of restoration and the coupled nature of social and ecological systems, ranging from the incorporation of cultural values and Traditional Ecological Knowledge into restoration, to the consideration of the broader impacts of markets on restoration practices. In addition, we include perspectives that focus on improving communication between social and natural scientists as well as between scientists and practitioners, developing effective ecological monitoring, and applying more integrated, whole‐landscape approaches to restoration. We conclude with insights on recurrent themes in the papers regarding planning restoration in human‐modified landscapes, application of ecological theory, improvements to restoration practice, and the social contexts of restoration. We share lessons from our cross‐disciplinary endeavor, and invite further discussion on the future directions of restoration ecology through contributions to our seminar blog site http://restecology.blogspot.com .  相似文献   

16.
1.  Plant–soil interactions play a central role in the biogeochemical carbon (C), nitrogen (N) and hydrological cycles. In the context of global environmental change, they are important both in modulating the impact of climate change and in regulating the feedback of greenhouse gas emissions (CO2, CH4 and N2O) to the climate system.
2.  Dynamic global vegetation models (DGVMs) represent the most advanced tools available to predict the impacts of global change on terrestrial ecosystem functions and to examine their feedbacks to climate change. The accurate representation of plant–soil interactions in these models is crucial to improving predictions of the effects of climate change on a global scale.
3.  In this paper, we describe the general structure of DGVMs that use plant functional types (PFTs) classifications as a means to integrate plant–soil interactions and illustrate how models have been developed to improve the simulation of: (a) soil carbon dynamics, (b) nitrogen cycling, (c) drought impacts and (d) vegetation dynamics. For each of these, we discuss some recent advances and identify knowledge gaps.
4.  We identify three ongoing challenges, requiring collaboration between the global modelling community and process ecologists. First, the need for a critical evaluation of the representation of plant–soil processes in global models; second, the need to supply and integrate knowledge into global models; third, the testing of global model simulations against large-scale multifactor experiments and data from observatory gradients.
5.   Synthesis . This paper reviews how plant–soil interactions are represented in DGVMs that use PFTs and illustrates some model developments. We also identify areas of ecological understanding and experimentation needed to reduce uncertainty in future carbon coupled climate change predictions.  相似文献   

17.
Numerous coastal and estuarine management programs around the world are developing strategies for climate change and priorities for climate change adaptation. A multi-state work group collaborated with scientists, researchers, resource managers and non-governmental organizations to develop a monitoring program that would provide warning of climate change impacts to the Long Island Sound estuarine and coastal ecosystems. The goal of this program was to facilitate timely management decisions and adaptation responses to climate change impacts. A novel approach is described for strategic planning that combines available regional-scale predictions and climate drivers (top down) with local monitoring information (bottom up) to identify candidate sentinels of climate change. Using this approach, 37 candidate sentinels of climate change were identified as well as a suite of core abiotic parameters that are drivers of environmental change. A process for prioritizing sentinels was developed and identified six of high priority for inclusion in pilot-scale monitoring programs. A monitoring strategy and an online sentinel data clearinghouse were developed. The work and processes presented here are meant to serve as a guide to other coastal and estuarine management programs seeking to establish a targeted monitoring program for climate change and to provide a set of “lessons learned.”  相似文献   

18.
Ecological theory is built upon assumptions about the fundamental nature of organism-environment interactions. We argue that two mutually exclusive sets of such assumptions are available and that they have given rise to alternative approaches to studying ecology. The fundamentally different premises of these approaches render them irreconcilable with one another. In this paper, we present the first logical formalisation of these two paradigms.The more widely-accepted approach - which we label the demographic paradigm - includes both population ecology and community ecology (synecology). Demographic ecology assumes that the environment is relatively stable and that biotic processes, governed predominantly by resource availability, are the most important of ecological and evolutionary influences. Moreover, ecological processes are assumed to translate into directional selection pressures that drive significant evolutionary change on a local scale through the process of optimisation.Serious deficiencies in aspects of the demographic approach have been identified over the past few decades by various ecologists, including Gleason, Andrewartha and Birch, White, Den Boer, Strong, Simberloff, and others. Short-term evolutionary optimisation has also been seriously questioned.The development of the alternative approach (autecology) has been subverted by the prominence of demographic ecology. Moreover, it has not been recognised that autecology is underpinned by robust principles and that they are independent of the underlying demographic principles. Components of the autecological approach have been developed to some extent, but they have not been integrated with ancillary fields of study. We therefore articulate the assumptions from which autecology is derived, and use this as a basis for integrating the various spheres of autecological research.We add to the ongoing development of autecology by linking autecological understanding, in so far as it is developed, with the evolutionary justification for species' characteristics being stable in an environment that is continuously dynamic in space and time. The ecology of organisms is essentially an ongoing matching of their species-specific characteristics to the prevailing environmental factors and dynamics. We thus provide a consistent logic through the following subject areas; climate and climate change, spatial and temporal environmental heterogeneity and dynamic theory, physiology, behaviour, migration, and evolution. We demonstrate why adaptation cannot be an ongoing process, but takes place only when organisms are prevented, by incidental influences, from matching the overall dynamics of the environment.  相似文献   

19.
One of the most significant outcomes of genomics has been arapid increase in the rate that we as a community can generatedata on interesting biological systems. Rapid improvements intechnologies such as DNA microarrays and proteomics applicationshave produced a climate where the challenge is no longer collectinghigh quality data but rather managing and analyzing it. As wein the bioinformatics community have addressed this challenge,we have had to carefully consider the way in which the resultsof our intellectual efforts—the software tools that wedevelop—are made available to the wider research community.Increasingly, bioinformatics scientists are coming to call fordevelopment in an open source environment in which softwareis distributed with its underlying source code  相似文献   

20.
Biodiversity is a complex, yet essential, concept for undergraduate students in ecology and other natural sciences to grasp. As beginner scientists, students must learn to recognize, describe, and interpret patterns of biodiversity across various spatial scales and understand their relationships with ecological processes and human influences. It is also increasingly important for undergraduate programs in ecology and related disciplines to provide students with experiences working with large ecological datasets to develop students’ data science skills and their ability to consider how ecological processes that operate at broader spatial scales (macroscale) affect local ecosystems. To support the goals of improving student understanding of macroscale ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary team that included grant personnel, scientists, and faculty from ecology and spatial sciences to design a flexible learning activity to teach macroscale biodiversity concepts using large datasets from the National Ecological Observatory Network (NEON). We piloted this learning activity in six courses enrolling a total of 109 students, ranging from midlevel ecology and GIS/remote sensing courses, to upper‐level conservation biology. Using our classroom experiences and a pre/postassessment framework, we evaluated whether our learning activity resulted in increased student understanding of macroscale ecology and biodiversity concepts and increased familiarity with analysis techniques, software programs, and large spatio‐ecological datasets. Overall, results suggest that our learning activity improved student understanding of biological diversity, biodiversity metrics, and patterns of biodiversity across several spatial scales. Participating faculty reflected on what went well and what would benefit from changes, and we offer suggestions for implementation of the learning activity based on this feedback. This learning activity introduced students to macroscale ecology and built student skills in working with big data (i.e., large datasets) and performing basic quantitative analyses, skills that are essential for the next generation of ecologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号