首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Some conceptual models seeking to explain the coexistence of multiple species in hyperdiverse settings predict that species will not be randomly distributed with respect to each other. In stark contrast the ‘stochastic geometry’ model assumes that a species fine‐scale spatial distribution is independent of that of other species in the community. Empirical tests in temperate and tropical forests have provided support for both perspectives. Using point pattern analyses we assessed the prevalence of heterospecific associations between > 10 500 pairs of species and > 3400 pairs of plant functional types (PFTs) in four biodiverse shrubland communities in southwestern Australia. After controlling for first‐order effects, spatial associations between species and PFTs were rare, but were most prevalent at the least species‐rich of the four sites considered. Individuals tended to have fewer species in their local neighbourhoods than expected under a null model of random relabelling, with this departure most pronounced at the site with fewest species. The consistency of neighbourhood composition experienced by individuals of the same species is, as a result, less than the average under random mixing. Our results demonstrate that the frequency of heterospecific spatial associations is both rare in speciose systems and declines with species richness, and provide further empirical support for the stochastic geometry assumption in species‐rich communities.  相似文献   

2.
A topic of particular current interest is community‐level approaches to species distribution modelling (SDM), i.e. approaches that simultaneously analyse distributional data for multiple species. Previous studies have looked at the advantages of community‐level approaches for parameter estimation, but not for model selection – the process of choosing which model (and in particular, which subset of environmental variables) to fit to data. We compared the predictive performance of models using the same modelling method (generalised linear models) but choosing the subset of variables to include in the model either simultaneously across all species (community‐level model selection) or separately for each species (species‐specific model selection). Our results across two large presence/absence tree community datasets were inconclusive as to whether there was an overall difference in predictive performance between models fitted via species‐specific vs community‐level model selection. However, we found some evidence that a community approach was best suited to modelling rare species, and its performance decayed with increasing prevalence. That is, when data were sparse there was more opportunity for gains from “borrowing strength” across species via a community‐level approach. Interestingly, we also found that the community‐level approach tended to work better when the model selection problem was more difficult, and more reliably detected “noise” variables that should be excluded from the model.  相似文献   

3.
4.
5.
Understory plants are an important component of the high plant species diversity characteristic of neotropical rain forests. Herbs, shrubs, understory trees, and saplings of canopy trees occupy a broadly uniform environment of abundant rainfall, low light levels, and high humidity. We asked whether this community at the La Selva Biological Station in the Caribbean lowlands of Costa Rica was structured by environmental filters such as soil origin, topographic position, and understory light availability. We used nested quadrats to assess effects of soil origin (recent alluvium, weathered alluvium, residual volcanic soil) and topographic position (ridges, mid‐slopes and flats) on species composition, density, and diversity and measured six edaphic and understory light parameters. Non‐metric multidimensional scaling ordinations were based on frequency of occurrence in 20 quadrats for 272 species in the shrub size class and 136 species in the small‐tree size class for 17 sites. Three axes were correlated with composite environmental variables produced by principal component analysis representing slope, extractable phosphorus, and light. NMS site positions also reflected soil origin, topographic position, and geographic location. The analyses illustrated a complex community structured by species responses to environmental filters at multiple, interdigitated spatial scales. We suggest that light availability affected by canopy dynamics and dispersal limitation provides additional sources of variation in species distributions, which interact with edaphic patterns in complex ways. Abstract in Spanish is available with online material.  相似文献   

6.
Native pollinators are increasingly needed on conventional farms yet rarely fostered via management. One solution is habitat restoration in marginal areas, but colonization may be constrained if resident pollinator richness is low or if restored areas fail to provide sufficient floral or nesting resources. We quantified restoration outcomes for native bees, and associated resources, on three conventional farms with forb‐grass prairie plantings on marginal areas of varying sizes, in a heavily farmed region of central North America. We tested bee abundance and richness in restored prairie versus the dominant habitats of the region—crops, forest remnants, and edges of fields and roads. Restored prairie supported 2× more species (95 of 119 total species) and 3× more bees (72% of captured individuals) compared to the other cover types. All richness and abundance differences among habitat types were associated with higher floral resources in restored prairie. Thirty percent of the bee species were unique to prairie, consistent with long‐distance dispersal but begging the question of origin given the absence of prairie regionally. Our results suggest that road and field edges may be the source, as these areas had more floral and nesting resources than forest or crop fields combined and supported 55% of all species despite covering only approximately 5% of the sampled farms. Habitat scarcity is not the only constraint on native bees in agricultural landscapes, with increasing concern over disease and chemicals. However, we observed that restored areas on marginal lands of conventional farms can support abundant and species‐rich populations of native bees.  相似文献   

7.
Question: Do above‐ and belowground insects differentially impact plant community structure and function in a diverse native grassland? Location: Rough fescue prairie in Alberta, Canada. Methods: Above‐ and belowground insects were suppressed with insecticides for 5 years using a randomised block design. During this experiment, a severe drought began in 2001 and ended in 2003. Aboveground plant growth was measured as cover and biomass from 2001 to 2005. Root demography was measured in 2002 using a minirhizotron. Mixed models and repeated measures ANOVA were used to determine treatment effects on a number of response variables. MRBP were used to test for treatment effects on community composition. Results: Five years of insect suppression had few significant effects on plant growth, species richness or community composition, and were limited primarily to the severe drought in 2002. During the drought, insect attack increased root mortality, reduced plant cover, and altered community composition. Following the drought, plant responses were unaffected by insecticide application for the remainder of the experiment. Conclusions: Five years of insect suppression had only minor effects on community structure and function in this diverse native grassland. There was no indication that these effects increased over time. The results are counter to studies conducted in productive old‐field communities that revealed large effects of insects on community structure. We suggest that the unique features of this system, such as high species evenness, abundance of generalist herbivores, and a lack of competition for light among plants, limited the potential for insects to greatly impact community‐level processes.  相似文献   

8.
9.
Abstract. In France, most civil engineering and excavation projects are at present accompanied by compensatory measures with the aim of preserving biodiversity. In order to avoid the destruction of a habitat of high conservation interest in NE France, harbouring two legally protected plant species, an experiment of soil translocation was conducted on an area of 1 ha. The donor site was an extensively managed mesophilic meadow and the receiving site was a neighbouring arable land. The vegetation of the translocated meadow was described 8 and 17 months after soil translocation, and compared (1) with vegetation resulting from more classical restoration techniques tested on the arable land (natural regeneration and seed mixture sowing) and (2) with the soil seed bank and vegetation previously present on the donor site. Results showed that the soil translocation technique permitted the development of many meadow species, including two legally protected species, and few ruderal species despite a large area of bare ground. This technique seems effective in terms of number and abundance of meadow species compared to natural regeneration and commercial seed sowing. In the case of the two classical methods, species richness was lower and only widespread species were present. Topsoil translocation provides a good compensatory method to avoid habitat and species destruction. However, the study should be continued, with the aim of assessing the longer term development and stabilization of the vegetation of the translocated meadow.  相似文献   

10.
Abstract. Secondary succession and seed bank formation was studied in a formerly grazed, abandoned, eastern Hungarian sandy steppe‐meadow (Pulsatillo‐Festucetum). The vegetation was sampled at different elevations of a sand dune which became partly invaded by the tree Robinia pseudo‐acacia ca. 10 yr ago. Pre‐abandonment vegetation records were used as historic references. Though composition of the non‐invaded grassland only changed moderately, dominance of tall grasses (Elymus hispidus, Poa angustifolia) increased significantly at the cost of annuals and low stature perennials. In the stand invaded by Robinia most grassland species were lost and replaced by nitrophytes. Vertical position influenced species abundance, but affected the composition only moderately. Fine‐scale zonation of the vegetation also changed with time. Species richness of the above‐ground vegetation and the seed density of soil samples at the lower elevation were slightly greater than at the higher sites. Seed banks of sensitive grassland specialists (e.g. Pulsatilla pratensis subsp. hungarica) disappeared during grass encroachment. Following extinction from above‐ground vegetation, restoration must rely on dispersal from adjacent areas. In contrast, several annuals and perennials, which survived this degradation stage in the above‐ground vegetation, possessed seed banks. Many of these species became extinct from the vegetation during the Robinia invasion but left viable persistent seeds. This fact is promising for restoration of the Potentillo‐Festucetum sandy pasture. Competitive weedy species and sprouting Robinia can, however, limit seedling establishment.  相似文献   

11.
12.
Species phenotypic traits affect the interaction patterns and the organization of seed‐dispersal interaction networks. Understanding the relationship between species characteristics and network structure help us understand the assembly of natural communities and how communities function. Here, we examine how species traits may affect the rules leading to patterns of interaction among plants and fruit‐eating vertebrates. We study a species‐rich seed‐dispersal system using a model selection approach to examine whether the rules underlying network structure are driven by constraints in fruit resource exploitation, by preferential consumption of fruits by the frugivores, or by a combination of both. We performed analyses for the whole system and for bird and mammal assemblages separately, and identified the animal and plant characteristics shaping interaction rules. The structure of the analyzed interaction network was better explained by constraints in resource exploitation in the case of birds and by preferential consumption of fruits with specific traits for mammals. These contrasting results when looking at bird–plant and mammal–plant interactions suggest that the same type of interaction is organized by different processes depending on the assemblage we focus on. Size‐related restrictions of the interacting species (both for mammals and birds) were the most important factors driving the interaction rules. Our results suggest that the structure of seed‐dispersal interaction networks can be explained using species traits and interaction rules related to simple ecological mechanisms.  相似文献   

13.
14.
15.
16.
Question: Does transplantation of small blocks of turfs contribute to restoration of species‐rich meadows on fallow land? What is the role of vegetative spread and seedling establishment of meadow plants in the neighbourhood of the transplanted turfs? Location: Bílé Karpaty Mountains, SE Czech Republic. Methods: Twenty‐five meadow blocks, 0.4 m × 0.4 m in size, were transplanted to fallow land (unfertile and dry) and species composition was monitored in the source area, in the transferred turfs and in their neighbourhood for 3 yr. Multivariate analyses were used to assess successional trends. Results: The transferred meadow blocks served as a source of diaspores for the seed‐limited fallow land. Out of 80 transplanted species 17 species spread to adjacent plots within 3 yr. The frequency of plants expanding from the transferred turfs, either vegetatively or by seeds, was relatively low and from 2002 to 2004 a total of 22 species declined in the transferred turfs before expanding to the neighbourhood. Successional trends in species composition of the plots adjacent to the transferred blocks were strongly significant compared with the vegetation of the source area despite the short‐term data used for the evaluation. The role of the seed bank in restoration was negligible. Conclusions: In infertile and dry environments, transplanted turfs may significantly speed up restoration, especially if natural sources of target plant seeds are not available in the neighbourhood. However, the restoration process is long‐term and not all transferred plants can be expected to establish in the fallow land.  相似文献   

17.
Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained central and a drained margin site in a species‐rich fen meadow (Cirsio dissecti‐Molinietum). Biomass production and species composition were monitored during four years. Results: At the central site, N addition boosted biomass production, but only during one year. The species composition was not changed. P fertilization increased the biomass production and changed the species composition from a vegetation dominated by Carex panicea to a grassland community with abundant Holcus lanatus, but not before the second year. At the margin site, P fertilization changed the species composition in a similar way, but biomass production was not increased. N fertilization had no effect. At both sites the P induced shift in species composition persisted for four years although the P effect declined during the experiment. Conclusions: The biomass responses show that N was limiting in the central site. Another nutrient, besides N and P (probably K) must have been limiting in the marginal site. The fast decline of the N effect on biomass is ascribed to increased denitrification and biomass removal. The delay in the P effect on biomass and species composition and the persistence of the P effect on species composition are ascribed to fast immobilisation and subsequent slow release of fertilizer P in the peat soil. Recurrence of the P pulses is expected to cause permanent changes in species composition.  相似文献   

18.
19.
20.
Abstract. This paper describes the effects of re‐establishing seasonal cattle grazing by 0.7 animal.ha‐1 on vegetation in a long‐term abandoned, and partly degraded, semi‐natural mountain pasture in the ?umava National Park, Czech Republic. There was very uneven grazing intensity inside the locality, and grazing preference changed during the season: cattle grazed most of the time in productive but species‐poor Deschampsia cespitosa swards, but changed to a species‐rich Violion caninae stand in the middle of the summer. A species‐rich Carex rostrata community was only grazed at the end of the season. Species‐poor swards dominated by Nardus stricta and Carex brizoides were mainly used as resting areas. Both grazing and excluding from grazing had a negative effect on species diversity of the Deschampsia cespitosa swards. The soil seed bank contained only few species that are characteristic of mountain grassland communities, and seed dispersal of the target species by cattle dung was also found to be very limited. Thus both grazing and exclusion from grazing are probably of limited value for the restoration of species‐rich grasslands from species‐poor Deschampsia cespitosa swards in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号