首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersal, whether in the form of a dandelion seed drifting on the breeze, or a salmon migrating upstream to breed in a nonnatal stream, transports genes between locations. At these locations, local adaptation modifies the gene frequencies so their carriers are better suited to particular conditions, be those of newly disturbed soil or a quiet river pool. Both dispersal and local adaptation are major drivers of population structure; however, in general, their respective roles are not independent and the two may often be at odds with one another evolutionarily, each one exhibiting negative feedback on the evolution of the other. Here, we investigate their joint evolution within a simple, discrete‐time, metapopulation model. Depending on environmental conditions, their evolutionary interplay leads to either a monomorphic population of highly dispersing generalists or a collection of rarely dispersing, locally adapted, polymorphic sub‐populations, each adapted to a particular habitat type. A critical value of environmental heterogeneity divides these two selection regimes and the nature of the transition between them is determined by the level of kin competition. When kin competition is low, at the transition we observe discontinuities, bistability, and hysteresis in the evolved strategies; however, when high, kin competition moderates the evolutionary feedback and the transition is smooth.  相似文献   

2.
A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244-251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt's (Am Nat 140:1010-1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.  相似文献   

3.
4.
How do gene variants with opposing effects on fitness in juvenile and adult insects perform in different ecological settings? Marden et al. used alleles of two antagonistic genes involved in metabolism and oxygen sensing in the Glanville fritillary butterfly as a model to demonstrate how these genes can antagonistically affect larval development and the adaptation of adults to different landscapes. This paper provides a case study for understanding how antagonistic pleiotropy can contribute to species adaption in patchy environments.  相似文献   

5.
6.
Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short‐ (SDD) and long‐distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual‐based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance σ of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.  相似文献   

7.
8.
9.
In models of competition in which space is treated as a continuum, and population size as continuous, there are no limits to the number of species that can coexist. For a finite number of sites, N, the results are different. The answer will, of course, depend on the model used to ask the question. In the Tilman-May-Nowak ordinary differential equation model, the number of species is asymptotically C log N with most species packed in at the upper end of the competitive hierarchy. In contrast, for metapopulation models with discrete individuals and stochastic spatial systems with various competition neighborhoods, we find a traditional species area relationship CN(a), with no species clumping along the phenotypic gradient. The exponent a is larger by a factor of 2 for spatially explicit models. In words, a spatial distribution of competitors allows for greater diversity than a metapopulation model due to the effects of recruitment limitation in their competition.  相似文献   

10.
Many species of birds and mammals are faithful to their natal and breeding site or group. In most of them one sex is more philopatric than the other. In birds it is usually females which disperse more than males; in mammals it is usually males which disperse more than females. Reproductive enhancement through increased access to mates or resources and the avoidance of inbreeding are important in promoting sex differences in dispersal. It is argued that the direction of the sex bias is a consequence of the type of mating system. Philopatry will favour the evolution of cooperative traits between members of the sedentary sex. Disruptive acts will be a feature of dispersers.  相似文献   

11.
Recently diverged or diverging populations can offer unobstructed insights into early barriers to gene flow during the initial stages of speciation. The current study utilised a novel insect system (order Mantophasmatodea) to shed light on the early drivers of speciation. The members of this group have limited dispersal abilities, small allopatric distributions and strong habitat associations in the Cape Floristic Region biodiversity hotspot in South Africa. Sister taxa from the diverse family Austrophasmatidae were chosen as focal species (Karoophasma biedouwense, K. botterkloofense). Population genetics and Generalized Dissimilarity Modelling (GDM) were used to characterise spatial patterns of genetic variation and evaluate the contribution of environmental factors to population divergence and speciation. Extensive sampling confirmed the suspected allopatry of these taxa. However, hybrids were identified in a narrow region occurring between the species' distributions. Strong population structure was found over short geographic distances; particularly in Kbiedouwense in which geographic distance accounted for 32% of genetic variation over a scale of 50 km (r = .56, p < .001). GDM explained 42%–78% of the deviance in observed genetic dissimilarities. Geographic distance was consistently indicated to be important for between species and within population differentiation, suggesting that limited dispersal ability may be an important neutral driver of divergence. Temperature, altitude, precipitation and vegetation were also indicated as important factors, suggesting the possible role of adaptation to local environmental conditions for species divergence. The discovery of the hybrid-zone, and the multiple allopatric species pairs in Austrophasmatidae support the idea that this could be a promising group to further our understanding of speciation modes.  相似文献   

12.
Prior ecological research has shown that spatial processes can enhance the temporal stability of populations in fluctuating environments. Less explored is the effect of dispersal on rapid adaptation and its concomitant impact on population dynamics. For asexually reproducing populations, theory predicts that dispersal in fluctuating environments can facilitate asynchrony among clones and enhance stability by reducing temporal variability of total population abundance. This effect is predicted when clones exhibit heritable variation in environmental optima and when fluctuations occur asynchronously among patches. We tested this in the field using artificial ponds and metapopulations composed of a diverse assemblage of Daphnia pulex clones. We directly manipulated dispersal presence/absence and environmental fluctuations in the form of nutrient pulses. Consistent with predictions, dispersal enhanced temporal asynchrony among clones in the presence of nutrient pulses; this in turn stabilized population dynamics. This effect only emerged when patches experienced spatially asynchronous nutrient pulses (dispersal had no effect when patches were synchronously pulsed). Clonal asynchrony was driven by strong positive selection for a single clone that exhibited a performance advantage under conditions of low resource availability. Our work highlights the importance of dispersal as a driver of eco-evolutionary dynamics and population stability in variable environments.  相似文献   

13.
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype‐dependent manner that alters their match to their environment. Examining a one‐locus, two‐patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype‐dependent dispersal, and the potential for adaptation via spatial sorting of genotypes.  相似文献   

14.
Warner  R. R. 《Coral reefs (Online)》1997,16(1):S115-S120
Coral Reefs -  Because of dispersal, many marine organisms exist in a series of local populations spanning a wide variety of different physical environments. Recruitment is often sporadic,...  相似文献   

15.
《Coral reefs (Online)》1997,16(5):S115-S120
  相似文献   

16.
The model of N. D. Atkinson and B. Shorrocks (J. Anim. Ecol. 50, 461–471 (1981)) as two competing species distributing their progeny amongst patches according to independent negative binomial distributions. The resulting separation of the species increases the likelihood of coexistence. We have assumed a much simpler distribution of the competitors which has enabled us to explore analytically the dynamics of interactions with two competing species and a shared natural enemy in a patchy environment. Two types of natural enemy have been considered: a generalist predator whose dynamics are uncoupled from those of the two prey species, and a specialist (e.g., a parasitoid) whose dynamics are entirely coupled to those of its two prey. The following conclusions emerge. Non-aggregating generalist predators causing random predation across patches are generally destabilizing (although asymmetrical predation may in some case enhance coexistence as a result of preferential predation on the superior competitor). Predator aggregation in patches of high prey density, however, produces a switching effect which tends to promote stability. Coexistence is now even possible with high degrees of correlation in the distribution of the two prey and in situations of extreme competition where the competition coefficients exceed one. The main difference in the models with a specialist parasitoid as the natural enemy is a reduction in stability compared with the equivalent generalist-prey interaction. But stable coexistence can still readily occur if the natural enemies aggregate markedly in patches of high prey density.  相似文献   

17.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

18.
A model of seed population dynamics proposed by S. A. Levin, A. Hastings, and D. Cohen is presented and analyzed. With the environment considered as a mosaic of patches, patch age is used along with time as an independent variable. Local dynamics depend not only on the local state, but also on the global environment via dispersal modelled by an integral over all patch ages. Basic technical properties of the time varying solutions are examined; necessary and sufficient conditions for nontrivial steady states are given; and general sufficient conditions for global asymptotic stability of these steady states are established. Primary tools of analysis include a hybrid Picard iteration, fixed point methods, monotonicity of solution structure, and upper and lower solutions for differential equations.This work was supported in part by National Science Foundation Grants MCS-7903497 and MCS-790349701  相似文献   

19.
Although dispersal is often considered to be a plastic, condition-dependent trait with low heritability, growing evidence supports medium to high levels of dispersal heritability. Obtaining unbiased estimates of dispersal heritability in natural populations nevertheless remains crucial to understand the evolution of dispersal strategies and their population consequences. Here we show that dispersal propensity (i.e. the probability of dispersal between habitat patches) displays a significant heritability in the collared flycatcher Ficedula albicollis, as estimated by within-family resemblance when accounting for environmental factors. Offspring of dispersing mothers or fathers had a higher propensity to disperse to a new habitat patch themselves. The effect of parental dispersal status was additional to that of local habitat quality, as measured by local breeding population size and success, confirming previous results about condition-dependent dispersal in this population. The estimated levels of heritability varied between 0.30±0.07 and 0.47±0.10, depending on parent–offspring comparisons made and correcting for a significant assortative mating with respect to dispersal status. Siblings also displayed a significant resemblance in dispersal propensity. These results suggest that variation in between-patch natal dispersal in the collared flycatcher is partly genetically determined, and we discuss ways to quantify this genetic basis and its implications.  相似文献   

20.
We have developed cellular automaton models for two species competing in a patchy environment. We have modeled three common types of competition: facilitation (in which the winning species can colonize only after the losing species has arrived) inhibition (in which either species is able to prevent the other from colonizing) and tolerance (in which the species most tolerant of reduced resource levels wins). The state of a patch is defined by the presence or absence of each species. State transition probabilities are determined by rates of disturbance, competitive exclusion, and colonization. Colonization is restricted to neighboring patches. In all three models, disturbance permits regional persistence of species that are excluded by competition locally. Persistence, and hence diversity, is maximized at intermediate disturbance frequencies. If disturbance and dispersal rates are sufficiently high, the inferior competitor need not have a dispersal advantage to persist. Using a new method for measuring the spatial patterns of nominal data, we show that none of these competition models generates patchiness at equilibrium. In the inhibition model, however, transient patchiness decays very slowly. We compare the cellular automaton models to the corresponding mean-field patch-occupancy models, in which colonization is not restricted to neighboring patches and depends on spatially averaged species frequencies. The patch-occupancy model does an excellent job of predicting the equilibrium frequencies of the species and the conditions required for coexistence, but not of predicting transient behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号