首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sex-specific interactions with antagonists may explain female maintenance in gynodioecious populations if seeds produced by hermaphroditic plants are preferred over seeds produced by female plants. Among antagonistic interactions, pre-dispersal seed predators have received relatively little attention even though they may exert sex-specific selective pressures on the evolution of floral and flowering traits. In this work, I investigate temporal variation in seed predation in gynodioecious Geranium sylvaticum, where in addition to female and hermaphrodite individuals, plants with an intermediate sexual expression are also present in most populations. Specifically, I examined whether seed predation is linked to flowering phenology, plant gender, and sexual dimorphism in floral and seed traits over the flowering season using an experimental field population. Within the population, I selected female, intermediate, and hermaphrodite plants with different timing of flowering onset (early, mid, or late), and collected seeds across the fruiting period. Seeds were weighed and examined for seed predator damage. The results show that the three genders experienced similar levels of seed predation attack regardless of their flowering phenology, and that overall seed predation was not related to changes in seed production or seed mass. These results suggest that sexual dimorphism in seed predation cannot be responsible for female maintenance in this species.  相似文献   

3.
4.
Aims Post-dispersal seed predation is an important ecosystem process because it can influence the seed's fate after the initial dispersal from the mother plant and subsequently transform communities. Even at small scales, post-dispersal seed predation can vary greatly depending on seed identity, granivorous taxa or microhabitat structure. However, little is known about the role of plant species richness and functional group richness in post-dispersal seed predation. The overall aim of this study was to test whether increasing plant species richness or plant functional group richness affects the rate and variability of post-dispersal seed predation. We additionally investigated the influence of vegetation structure and seed species identity on the rate and variability of post-dispersal seed predation and whether the influence of different granivorous taxa changed with increasing plant species richness.Methods We conducted seed removal experiments along a long-term experimental plant diversity gradient, comprising plots with monocultures to 60 species mixtures of common grassland species in Jena, Germany, in August 2011. We studied seeds of Onobrychis viciifolia, Pastinaca sativa and Trifolium pratense in exclusion experiments (seed cafeterias), an experimental setup that allowed access either for arthropods or slugs or for all granivorous taxa. Traditionally, seeds removed from seed cafeterias were classified as consumed but we used traceable fluorescent-coloured seeds to obtain more accurate predation rates by subtracting recovered seeds from overall removed seeds. The effect of multiple vegetation variables on mean and variability of seed predation rates was analysed using generalized mixed-effect models and linear regressions, respectively.Important findings Rates of recovered seeds were low but contributed to significant differences between seed predation rates and removal rates of seeds in some treatments. Seed predation rates were not directly correlated with increasing plant species richness or plant functional group richness but were influenced byseed species identity and granivorous taxa. Vegetation variables such as vegetation height and cover were significantly associated with seed predation rates. Depending on the seed species and/or the granivorous taxa, different vegetation variables correlated with seed predation rates. Our results indicate that effects of plant functional group richness and multiple vegetation variables on the magnitude of post-dispersal seed predation varied with seed identity and seed predator taxa. A direct effect of plant species and plant functional group richness could be shown on the variability of post-dispersal seed predation for some seed species and their respective predators. Thus, the changes in magnitude of post-dispersal seed predation with increasing plant species richness could potentially impact the fitness of some plant species and thereby influence plant community structure.  相似文献   

5.
  • Seed weight varies by several orders of magnitude among vascular plant species. However, the importance of potential drivers such as environmental conditions and plant functional traits have rarely been assessed for a larger taxonomic sample.
  • We collected seeds of 148 species from 237 sites spread across Mongolia and compared their weight among the major zonal vegetation types, taxonomic groups and a set of functional traits (growth form, dispersal mode, fruit type, storage organs and palatability).
  • Seed weight strongly varied among all functional traits and taxonomic groups, but no differences among vegetation zones were detected.
  • These results suggest a low impact of environmental conditions on the evolution of seed weight, contrasting the strong phylogenetic signal.
  相似文献   

6.
7.
8.
We determined the environmental correlates of vascular plant biodiversity in the Baetic‐Rifan region, a plant biodiversity hotspot in the western Mediterranean. A catalog of the whole flora of Andalusia and northern Morocco, the region that includes most of the Baetic‐Rifan complex, was compiled using recent comprehensive floristic catalogs. Hierarchical cluster analysis (HCA) and detrended correspondence analysis (DCA) of the different ecoregions of Andalusia and northern Morocco were conducted to determine their floristic affinities. Diversity patterns were studied further by focusing on regional endemic taxa. Endemic and nonendemic alpha diversities were regressed to several environmental variables. Finally, semi‐partial regressions on distance matrices were conducted to extract the respective contributions of climatic, altitudinal, lithological, and geographical distance matrices to beta diversity in endemic and nonendemic taxa. We found that West Rifan plant assemblages had more similarities with Andalusian ecoregions than with other nearby northern Morocco ecoregions. The endemic alpha diversity was explained relatively well by the environmental variables related to summer drought and extreme temperature values. Of all the variables, geographical distance contributed by far the most to spatial turnover in species diversity in the Baetic‐Rifan hotspot. In the Baetic range, climate was the most significant driver of nonendemic species beta diversity, while lithology and climate were the main drivers of endemic beta diversity. Despite the fact that Andalusia and northern Morocco are presently separated by the Atlantic Ocean and the Mediterranean Sea, the Baetic and Rifan mountain ranges have many floristic similarities – especially in their western ranges – due to past migration of species across the Strait of Gibraltar. Climatic variables could be shaping the spatial distribution of endemic species richness throughout the Baetic‐Rifan hotspot. Determinants of spatial turnover in biodiversity in the Baetic‐Rifan hotspot vary in importance between endemic and nonendemic species.  相似文献   

9.
It is widely recognized that we are entering an extinction event on a scale approaching the mass extinctions seen in the fossil record. Present-day rates of extinction are estimated to be several orders of magnitude greater than background rates and are projected to increase further if current trends continue. In vertebrates, species traits, such as body size, fecundity, and geographic range, are important predictors of vulnerability. Although plants are the basis for life on Earth, our knowledge of plant extinctions and vulnerabilities is lagging. Here, we disentangle the underlying drivers of extinction risk in plants, focusing on the Cape of South Africa, a global biodiversity hotspot. By comparing Red List data for the British and South African floras, we demonstrate that the taxonomic distribution of extinction risk differs significantly between regions, inconsistent with a simple, trait-based model of extinction. Using a comprehensive phylogenetic tree for the Cape, we reveal a phylogenetic signal in the distribution of plant extinction risks but show that the most threatened species cluster within short branches at the tips of the phylogeny--opposite to trends in mammals. From analyzing the distribution of threatened species across 11 exemplar clades, we suggest that mode of speciation best explains the unusual phylogenetic structure of extinction risks in plants of the Cape. Our results demonstrate that explanations for elevated extinction risk in plants of the Cape flora differ dramatically from those recognized for vertebrates. In the Cape, extinction risk is higher for young and fast-evolving plant lineages and cannot be explained by correlations with simple biological traits. Critically, we find that the most vulnerable plant species are nonetheless marching towards extinction at a more rapid pace but, surprisingly, independently from anthropogenic effects. Our results have important implications for conservation priorities and cast doubts on the utility of current Red List criteria for plants in regions such as the Cape, where speciation has been rapid, if our aim is to maximize the preservation of the tree-of-life.  相似文献   

10.
Ecological dominance in ants is often fuelled by carbohydrate intake. Most studies have focused on the importance of invasive ant mutualistic associations with trophobionts whereas few studies have investigated the importance of floral nectar on invasion success. In this study, utilisation of temporarily available floral nectar by the invasive Argentine ant, Linepithema humile, was compared to that of the dominant native ant, Anoplolepis custodiens, within the Cape Floristic Region (CFR), a biodiversity hotspot. The effect of these two focal ant species on species composition and abundance of ground foraging ants as well as floral arthropod visitors in inflorescences of Proteacea species was assessed. Foraging activity, and trophic ecology inferred from the abundance of natural stable isotopes of Carbon (δ13C) and Nitrogen (δ15N), and the ratio of Carbon to Nitrogen (C:N) were compared between the two ant species during three flowering periods. Linepithema humile significantly reduced the abundance and species diversity of both above-ground and floral arthropod species abundance and composition. Linepithema humile increased its foraging activity with increasing nectar availability, switching its diet to a more herbivorous one. Anoplolepis custodiens did not respond as effectively to increasing floral nectar or negatively impact floral arthropod visitors. This study showed that the availability of floral nectar and ability of L. humile to more effectively utilise this temporarily available resource than native ants, can contribute significantly to the further spread and persistence of L. humile in natural environments in the CFR.  相似文献   

11.
The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World''s most biodiverse regions may be shaped by long-term climate history as well as contemporary environment.  相似文献   

12.
Elucidating how evolutionary and ecological factors drive the assemblage of communities in biodiversity hotspots remains an important challenge. This currently impedes our ability to predict the responses of communities to the ongoing global changes in these major world’s biodiversity reservoirs. Here, we focus on the Sierra Nevada mountain range, a core region of the Baetic-Rifan biodiversity hotspot in the western Mediterranean, and explore the relative importance of soil properties and elevation in shaping phylogenetic and functional diversity of shrub communities. We recorded the total number of each species in community transects across elevation gradients and contrasting soil conditions, and measured some ecologically relevant functional traits (specific leaf area, leaf carbon:nitrogen ratio, plant height and blooming duration). Phylogenetic distances among species were inferred from a genus-level time-calibrated molecular phylogeny. Elevation was the main factor predicting phylogenetic and functional alpha diversity of plant communities. Species in high-elevation communities were phylogenetically distant but functionally similar, being relatively smaller and having relatively short blooming durations, whilst species in low-elevation communities showed the opposite pattern. Beta diversity in SLA and leaf C:N ratio based on species incidences were positively correlated with a soil pH and micronutrient gradient. Specifically, communities that develop on soils of high pH and low micronutrient concentrations showed low SLA values and high leaf C:N ratios, whilst communities on soils of lower pH and high micronutrient concentrations showed the opposite pattern. We conclude that soil properties and elevation simultaneously shape the structure of Mediterranean shrub communities by differentially acting on the different dimensions of the species niches. Elevation seems to filter plant height and phenology-related traits whereas nutrient-related functional traits are more related to soil properties. Our study illustrates the primary role of environmental heterogeneity for the maintenance of diversity in Mediterranean mountain ecosystems.  相似文献   

13.
Ellis EC  Antill EC  Kreft H 《PloS one》2012,7(1):e30535
Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems.  相似文献   

14.
15.
Mothers may affect the future success of their offspring by varying allocation to eggs and embryos. Allocation may be adaptive based on the environmental conditions perceived during early breeding. We investigated the effects of food supplementation and predation risk on yolk hormone transfer in the pied flycatcher Ficedula hypoleuca. In a food supplementation experiment, females were food‐supplemented prior to and during egg‐laying and androgen concentrations were measured throughout the laying order. Predation risk was investigated in three different studies combining both correlative data, where flycatchers bred in close proximity to two different predator species that prey upon adult flycatchers (either Tengmalm's owl Aegolius funereus or pygmy owl Glaucidium passerinum), and an experimental manipulation, where flycatchers were exposed to cues of a nest predator (least weasel Mustela nivalis). Females receiving food supplementation laid eggs with lower concentrations of androstenedione (A4) than females not receiving food supplements. Yolk testosterone (T) concentration showed the same pattern but the difference was not statically significant. Testosterone (but not A4) concentration increased within clutches, from the first to the last egg, independently of the food supplementation. Females breeding under high predation risk did not differ from control females in their yolk androgen levels (A4, T or progesterone). However, concentrations of A4 tended to be lower in the proximity of pygmy owls, which could indirectly increase offspring survival after fledging. Food supplementation during egg‐laying seems to have a stronger impact on maternal transfer of androgens than predation risk. Food availability and predation risk could differentially affect the trade‐offs of androgen allocation for the offspring when raised in good vs. dangerous environments.  相似文献   

16.
17.
18.
19.
Fertilization decreases plant biodiversity even when light is not limiting   总被引:1,自引:0,他引:1  
Many researchers hypothesize that plant richness declines at high soil fertility (and high productivity) due to light limitation. We tested this hypothesis in an old-field by independently manipulating fertilization and light levels via shade cloth (decreased light), vegetation tie-backs (increased light) and vegetation clipping (increased light). Droughts occurred during two of the four years of the study, and we found that higher light levels were generally associated with decreased plant richness in drought years but increased plant richness in wet years. Most importantly, fertilization decreased richness whether light availability limited richness (wet years) or did not limit richness (drought years), and the effects of fertilization and light manipulation treatments were additive. These results suggest that effects of fertilization on plant richness are at least partly independent of light levels and that competition for resources other than light plays a substantial role in the decline of plant richness after fertilization.  相似文献   

20.
Aim To compare theoretical approaches towards estimating risks of plant species loss to anthropogenic climate change impacts in a biodiversity hotspot, and to develop a practical method to detect signs of climate change impacts on natural populations. Location The Fynbos biome of South Africa, within the Cape Floristic Kingdom. Methods Bioclimatic modelling was used to identify environmental limits for vegetation at both biome and species scale. For the biome as a whole, and for 330 species of the endemic family Proteaceae, tolerance limits were determined for five temperature and water availability‐related parameters assumed critical for plant survival. Climate scenarios for 2050 generated by the general circulation models HadCM2 and CSM were interpolated for the region. Geographic Information Systems‐based methods were used to map current and future modelled ranges of the biome and 330 selected species. In the biome‐based approach, predictions of biome areal loss were overlayed with species richness data for the family Proteaceae to estimate extinction risk. In the species‐based approach, predictions of range dislocation (no overlap between current range and future projected range) were used as an indicator of extinction risk. A method of identifying local populations imminently threatened by climate change‐induced mortality is also described. Results A loss of Fynbos biome area of between 51% and 65% is projected by 2050 (depending on the climate scenario used), and roughly 10% of the endemic Proteaceae have ranges restricted to the area lost. Species range projections suggest that a third could suffer complete range dislocation by 2050, and only 5% could retain more than two thirds of their range. Projected changes to individual species ranges could be sufficient to detect climate change impacts within ten years. Main conclusions The biome‐level approach appears to underestimate the risk of species diversity loss from climate change impacts in the Fynbos Biome because many narrow range endemics suffer range dislocation throughout the biome, and not only in areas identified as biome contractions. We suggest that targeted vulnerable species could be monitored both for early warning signs of climate change and as empirical tests of predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号