首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past two decades, a large number of studies have investigated the relationship between biodiversity and ecosystem functioning, most of which focussed on a limited set of ecosystem variables. The Jena Experiment was set up in 2002 to investigate the effects of plant diversity on element cycling and trophic interactions, using a multi-disciplinary approach. Here, we review the results of 15 years of research in the Jena Experiment, focussing on the effects of manipulating plant species richness and plant functional richness. With more than 85,000 measures taken from the plant diversity plots, the Jena Experiment has allowed answering fundamental questions important for functional biodiversity research.First, the question was how general the effect of plant species richness is, regarding the many different processes that take place in an ecosystem. About 45% of different types of ecosystem processes measured in the ‘main experiment’, where plant species richness ranged from 1 to 60 species, were significantly affected by plant species richness, providing strong support for the view that biodiversity is a significant driver of ecosystem functioning. Many measures were not saturating at the 60-species level, but increased linearly with the logarithm of species richness. There was, however, great variability in the strength of response among different processes. One striking pattern was that many processes, in particular belowground processes, took several years to respond to the manipulation of plant species richness, showing that biodiversity experiments have to be long-term, to distinguish trends from transitory patterns. In addition, the results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability. This highlights the need to revisit diversity–stability theory.Second, we explored whether individual plant species or individual plant functional groups, or biodiversity itself is more important for ecosystem functioning, in particular biomass production. We found strong effects of individual species and plant functional groups on biomass production, yet these effects mostly occurred in addition to, but not instead of, effects of plant species richness.Third, the Jena Experiment assessed the effect of diversity on multitrophic interactions. The diversity of most organisms responded positively to increases in plant species richness, and the effect was stronger for above- than for belowground organisms, and stronger for herbivores than for carnivores or detritivores. Thus, diversity begets diversity. In addition, the effect on organismic diversity was stronger than the effect on species abundances.Fourth, the Jena Experiment aimed to assess the effect of diversity on N, P and C cycling and the water balance of the plots, separating between element input into the ecosystem, element turnover, element stocks, and output from the ecosystem. While inputs were generally less affected by plant species richness, measures of element stocks, turnover and output were often positively affected by plant diversity, e.g. carbon storage strongly increased with increasing plant species richness. Variables of the N cycle responded less strongly to plant species richness than variables of the C cycle.Fifth, plant traits are often used to unravel mechanisms underlying the biodiversity–ecosystem functioning relationship. In the Jena Experiment, most investigated plant traits, both above- and belowground, were plastic and trait expression depended on plant diversity in a complex way, suggesting limitation to using database traits for linking plant traits to particular functions.Sixth, plant diversity effects on ecosystem processes are often caused by plant diversity effects on species interactions. Analyses in the Jena Experiment including structural equation modelling suggest complex interactions that changed with diversity, e.g. soil carbon storage and greenhouse gas emission were affected by changes in the composition and activity of the belowground microbial community. Manipulation experiments, in which particular organisms, e.g. belowground invertebrates, were excluded from plots in split-plot experiments, supported the important role of the biotic component for element and water fluxes.Seventh, the Jena Experiment aimed to put the results into the context of agricultural practices in managed grasslands. The effect of increasing plant species richness from 1 to 16 species on plant biomass was, in absolute terms, as strong as the effect of a more intensive grassland management, using fertiliser and increasing mowing frequency. Potential bioenergy production from high-diversity plots was similar to that of conventionally used energy crops. These results suggest that diverse ‘High Nature Value Grasslands’ are multifunctional and can deliver a range of ecosystem services including production-related services.A final task was to assess the importance of potential artefacts in biodiversity–ecosystem functioning relationships, caused by the weeding of the plant community to maintain plant species composition. While the effort (in hours) needed to weed a plot was often negatively related to plant species richness, species richness still affected the majority of ecosystem variables. Weeding also did not negatively affect monoculture performance; rather, monocultures deteriorated over time for a number of biological reasons, as shown in plant-soil feedback experiments.To summarize, the Jena Experiment has allowed for a comprehensive analysis of the functional role of biodiversity in an ecosystem. A main challenge for future biodiversity research is to increase our mechanistic understanding of why the magnitude of biodiversity effects differs among processes and contexts. It is likely that there will be no simple answer. For example, among the multitude of mechanisms suggested to underlie the positive plant species richness effect on biomass, some have received limited support in the Jena Experiment, such as vertical root niche partitioning. However, others could not be rejected in targeted analyses. Thus, from the current results in the Jena Experiment, it seems likely that the positive biodiversity effect results from several mechanisms acting simultaneously in more diverse communities, such as reduced pathogen attack, the presence of more plant growth promoting organisms, less seed limitation, and increased trait differences leading to complementarity in resource uptake. Distinguishing between different mechanisms requires careful testing of competing hypotheses. Biodiversity research has matured such that predictive approaches testing particular mechanisms are now possible.  相似文献   

2.
1.?We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2.?Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3.?Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i.e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i.e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4.?Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning of the entire ecological community is critically linked to the diversity of its component plants species.  相似文献   

3.
施秀珍  王建青  黄志群  贺纪正 《生态学报》2022,42(15):6092-6102
森林是陆地生态系统的重要组成部分,其巨大的生产力和生态服务功能对人类的生存和发展至关重要。森林树种多样性增加能够显著提高森林生产力,关于树种多样性如何影响地下生物多样性及生态功能逐渐受到国内外学者的广泛关注。从土壤微生物及其介导的元素生物地球化学循环这一视角出发,综述了树种多样性对土壤细菌和真菌多样性、群落结构及功能的影响,提出需要进一步深入研究的方向。总体来说,树种多样性有利于增加土壤细菌生物量和多样性,是预测病原性真菌和菌根真菌多样性及群落结构的重要生物因子。树种多样性能增加土壤有机碳储量,增强森林土壤的甲烷氧化能力,并提高土壤磷周转速率及有效磷含量。关于树种多样性对森林土壤氮循环的影响需考虑多样性假说和质量比假说的相对贡献。今后应加强树种多样性对多个营养级之间相互作用的研究;关注树种多样性对生态系统多功能的影响;加强学科交叉,引入微生物种群动态模型和气候模型等模型预测方法,研究树种多样性对全球气候变化的应对机制,以期促进地上植物多样性与地下生态系统功能关系的研究,增强森林生态系统应对未来全球环境变化的能力。  相似文献   

4.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships.  相似文献   

5.
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis: Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation–soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.  相似文献   

6.
Vole disturbances and plant diversity in a grassland metacommunity   总被引:1,自引:0,他引:1  
Questad EJ  Foster BL 《Oecologia》2007,153(2):341-351
We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch (1 m2) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity scale, we expected burrows to increase resource heterogeneity and have a community composition distinct from the matrix. We measured resource variables and plant community composition in 30 paired plots representing disturbed burrows and undisturbed matrix patches in a cool-season grassland. Vole disturbance affected the mean values of nine resource variables measured and contributed more to resource heterogeneity in the metacommunity than matrix plots. Disturbance increased local plant species richness, metacommunity evenness, and the presence and abundance of fugitive species. To learn more about the contribution of burrow and matrix habitats to metacommunity diversity, we compared community similarity among burrow and matrix plots. Using Sorenson’s similarity index, which considers only presence–absence data, we found no difference in community similarity among burrows and matrix plots. Using a proportional similarity index, which considers both presence–absence and relative abundance data, we found low community similarity among burrows. Burrows appeared to shift the identity of dominant species away from the species dominant in the matrix. They also allowed subordinate species to persist in higher abundances. The patterns we observed are consistent with several diversity-maintaining mechanisms, including a successional mosaic and alternative successional trajectories. We also found evidence that prairie voles may be ecosystem engineers.  相似文献   

7.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   

8.
The biodiversity–ecosystem functioning (BEF) relationship is central in community ecology. Its drivers in competitive systems (sampling effect and functional complementarity) are intuitive and elegant, but we lack an integrative understanding of these drivers in complex ecosystems. Because networks encompass two key components of the BEF relationship (species richness and biomass flow), they provide a key to identify these drivers, assuming that we have a meaningful measure of functional complementarity. In a network, diversity can be defined by species richness, the number of trophic levels, but perhaps more importantly, the diversity of interactions. In this paper, we define the concept of trophic complementarity (TC), which emerges through exploitative and apparent competition processes, and study its contribution to ecosystem functioning. Using a model of trophic community dynamics, we show that TC predicts various measures of ecosystem functioning, and generate a range of testable predictions. We find that, in addition to the number of species, the structure of their interactions needs to be accounted for to predict ecosystem productivity.  相似文献   

9.
Human disturbances both decrease the number of species in ecosystems and change their relative abundances. Here we present field evidence demonstrating that shifts in species abundances can have effects on ecosystem functioning that are as great as those from shifts in species richness. We investigated spatial and temporal variability of leaf decomposition rates and community metrics of leaf‐eating invertebrates (shredders) in streams. The shredder community composition dramatically influenced the diversity–function relationship; decomposition was much higher for a given species richness at sites with high species dominance than at sites where dominance was low. Decomposition rates also markedly depended on the identity of the dominant species. Further, dominance effects on decomposition varied seasonally and the number of species required for maintaining decomposition increased with increasing evenness. These findings reveal important but less obvious aspects of the biodiversity–ecosystem functioning relationship.  相似文献   

10.
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34 531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance.  相似文献   

11.
Scattered trees are considered keystone structures and play an important role in Mediterranean sylvopastoral systems. Such systems are associated with high biodiversity and provide important natural resources and ecosystem services. In this study, we measured the contribution of scattered trees and different grazing management (cattle, sheep and wildlife only) to the diversity of the grassland sward in a dehesa (open holm oak woodland) located in Central Spain. We analyzed alpha and beta diversity through measurement of species richness, Shannon-Wiener, and Whittaker indices, respectively; and the floristic composition of the herb layer using subplots within two adjacent plots (trees present vs. trees absent) under three different grazing management regimes, including wildlife only, during a year. We found a 20–30% increment in the alpha diversity of wooded plots, compared to those without trees, regardless of grazing management. All beta indices calculated showed more than 60% species turnover. Wooded plots were occupied by different herbaceous species in different heterogeneous microsites (under the canopy, in the ecotone or on open land) created by the trees. Livestock grazing modified species composition (e.g. more nitrophilous species) compared to wildlife only plots. In addition to all their other benefits, trees are important to maintaining grassland diversity in Mediterranean dehesas.  相似文献   

12.
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.  相似文献   

13.
Biodiversity–ecosystem functioning experiments typically inspect functioning in randomly composed communities, representing broad gradients of taxonomic richness. We tested if the resulting evenness gradients and evenness–functioning relationships reflect those found in communities facing evenness loss caused by anthropogenic stressors. To this end, we exposed marine benthic diatom communities to a series of treatments with the herbicide atrazine, and analysed the relationship between the resulting gradients of evenness and ecosystem functioning (primary production, energy content and sediment stabilization). Atrazine exposure resulted in narrower evenness gradients and steeper evenness–functioning relations than produced by the design of random community assembly. The disproportionately large decrease in functioning following atrazine treatment was related to selective atrazine effects on the species that contributed most to the ecosystem functions considered. Our findings demonstrate that the sensitivity to stress and the contribution to ecosystem functioning at the species level should be both considered to understand biodiversity and ecosystem functioning under anthropogenic stress. Synthesis Biodiversity loss affects ecosystem functioning, yet biodiversity–ecosystem functioning relations have mainly been investigated using communities with random species loss. In nature however, species are lost according to their sensitivity to environmental stress. In the present study, biodiversity loss and biodiversity–ecosystem functioning relations in randomly composed diatom communities were compared to those induced by the pesticide atrazine. Stress exposure resulted in smaller biodiversity loss but steeper decrease in functioning than in randomly composed communities, due to selective atrazine effects on the best performing species. Therefore, species‐specific sensitivity and contribution to ecosystem functioning need to be considered to predict biodiversity and ecosystem functioning under anthropogenic stress.  相似文献   

14.
Biodiversity‐ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real‐world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large‐scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large‐scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species‐abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species‐abundance distributions in nature.  相似文献   

15.
The idea that species diversity can influence ecosystem functioning has been controversial and its importance relative to compositional effects hotly debated. Unfortunately, assessing the relative importance of different explanatory variables in complex linear models is not simple. In this paper we assess the relative importance of species richness and species composition in a multilevel model analysis of net aboveground biomass production in grassland biodiversity experiments by estimating variance components for all explanatory variables. We compare the variance components using a recently introduced graphical Bayesian ANOVA. We show that while the use of test statistics and the R2 gives contradictory assessments, the variance components analysis reveals that species richness and composition are of roughly similar importance for primary productivity in grassland biodiversity experiments.  相似文献   

16.
Biodiversity has been declining in many areas, and there is great interest in determining whether this decline affects ecosystem functioning. Most biodiversity—ecosystem functioning studies have focused on the effects of species richness on net primary productivity. However, biodiversity encompasses both species richness and evenness, ecosystem functioning includes other important processes such as decomposition, and the effects of richness on ecosystem functioning may change at different levels of evenness. Here, we present two experiments on the effects of litter species evenness and richness on litter decomposition. In the first experiment, we varied the species evenness (three levels), identity of the dominant species (three species), and micro-topographic position (low points [gilgais] or high points between gilgais) of litter in three-species mixtures in a prairie in Texas, USA. In a second experiment, we varied the species evenness (three levels), richness (one, two, or four species per bag), and composition (random draws) of litter in a prairie in Iowa, USA. Greater species evenness significantly increased decomposition, but this effect was dependent on the environmental context. Higher evenness increased decomposition rates only under conditions of higher water availability (in gilgais in the first experiment) or during the earliest stages of decomposition (second experiment). Species richness had no significant effect on decomposition, nor did it interact with evenness. Micro-topographic position and species identity and composition had larger effects on decomposition than species evenness. These results suggest that the effects of litter species diversity on decomposition are more likely to be manifested through the evenness component of diversity than the richness component, and that diversity effects are likely to be environmentally context dependent.  相似文献   

17.
Grime's (1998) "mass-ratio" hypothesis holds that ecosystem processes depend in the short term on functional properties of dominant plants and in the longer term on how resident species influence the recruitment of dominants. The latter of these effects may be especially important among early-successional species in disturbed ecosystems, but experimental tests are few. We removed two groups of early-successional species, an annual forb Gutierrezia dracunculoides (DC.) S. F. Blake and annual species (mostly grasses) that complete growth early in the growing season [early-season (ES) species], from a heavily-grazed grassland in central Texas, USA dominated by a C4 perennial grass. We sought to determine effects of annuals on grassland functioning [productivity, water balance, soil and plant nitrogen (N)] and composition. Removals did not impact N retention in the soil/plant system during the two years of this study, but removing ES annuals increased the amount of water between 30 and 120 cm in the soil profile early in each growing season. Production and N accumulation by vegetation declined following the removal of ES annuals in approximate proportion to the contribution of annuals to aboveground biomass and N, consistent with the mass-ratio hypothesis. By the second year, production and N uptake by initially sub-dominant species increased to fully compensate for the loss of annuals. These results are consistent with the view that ecosystem functions are more strongly linked to species attributes than to diversity per se. Longer-term effects of annuals on grassland composition were evident in a dramatic increase in biomass of perennial forbs after annuals were removed. Because perennial forbs differ from the dominant grass in this grassland in traits that influence ecosystem functioning, ES annuals may affect grassland functioning more by regulating the composition of vegetation than by directly affecting process rates.  相似文献   

18.
Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1–60), functional richness (1–4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants.  相似文献   

19.
1. The importance of species diversity for the stability of populations, communities and ecosystem functions is a central question in ecology. 2. Biodiversity experiments have shown that diversity can impact both the average and variability of stocks and rates at these levels of ecological organization in single trophic-level ecosystems. Whether these impacts hold in food webs and across trophic levels is still unclear. 3. We asked whether resource species diversity, community composition and consumer feeding selectivity in planktonic food webs impact the stability of resource or consumer populations, community biomass and ecosystem functions. We also tested the relative importance of resource diversity and community composition. 4. We found that resource diversity negatively affected resource population stability, but had no effect on consumer population stability, regardless of the consumer's feeding selectivity. Resource diversity had positive effects on most ecosystem functions and their stability, including primary production, resource biomass and particulate carbon, nitrogen and phosphorus concentrations. 5. Community composition, however, generally explained more variance in population, community and ecosystem properties than species diversity per se. This result points to the importance of the outcomes of particular species interactions and individual species' effect traits in determining food web properties and stability. 6. Among the stabilizing mechanisms tested, an increase in the average resource community biomass with increasing resource diversity had the greatest positive impact on stability. 7. Our results indicate that resource diversity and composition are generally important for the functioning and stability of whole food webs, but do not have straightforward impacts on consumer populations.  相似文献   

20.
Plant elemental composition can indicate resource limitation, and changes in key elemental ratios (e.g. plant C:N ratios) can influence rates including herbivory, nutrient recycling, and pathogen infection. Although plant stoichiometry can influence ecosystem‐level processes, very few studies have addressed whether and how plant C:N stoichiometry changes with plant diversity and composition. Here, using two long‐term experimental manipulations of plant diversity (Jena and Cedar Creek), we test whether plant richness (species and functional groups) or composition (functional group proportions) affects temporal trends and variability of community‐wide C:N stoichiometry. Site fertility determined the initial community‐scale C:N ratio. Communities growing on N‐poor soil (Cedar Creek) began with higher C:N ratios than communities growing on N‐rich soil (Jena). However, site‐level plant C:N ratios converged through time, most rapidly in high diversity plots. In Jena, plant community C:N ratios increased. This temporal trend was stronger with increasing richness. However, temporal variability of C:N decreased as plant richness increased. In contrast, C:N decreased over time at Cedar Creek, most strongly at high species and functional richness, whereas the temporal variability of C:N increased with both measures of diversity at this site. Thus, temporal trends in the mean and variability of C:N were underlain by concordant changes among sites in functional group proportions. In particular, the convergence of community‐scale C:N over time at these very different sites was mainly due to increasing proportions of forbs at both sites, replacing high mean C:N (C4 grasses, Cedar Creek) or low C:N (legumes, Jena) species. Diversity amplified this convergence; although temporal trends differed in sign between the sites, these trends increased in magnitude with increasing species richness. Our results suggest a predictive mechanistic link between trends in plant diversity and functional group composition and trends in the many ecosystem rates that depend on aboveground community C:N. Synthesis We compared the effect of plant diversity on the temporal dynamics of community stoichiometry in two long‐term grassland diversity experiments: the Cedar Creek and Jena Experiments. Changes in community C:N ratios were accelerated by increasing diversity at both sites, but in opposite directions depending on soil fertility. Stoichiometry changes were driven by shifts of functional group composition differing in their elemental compositions, the identity of the functional groups depending on the site. Thus, we highlighted that community turnover constrained the effect of diversity on plant stoichiometry at both sites  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号