首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crustaceans, like all aquatic invertebrates, take up and accumulate metals from a wide range of sources and the trace metal concentrations within their tissues and bodies show great variability. Trace metal uptake in crustaceans occurs from the water and food, either of which may be affected by the physico-chemical properties of the sediment. Accumulated metal concentrations in amphipods are contrasted with those of other crustaceans and examples are given to show how external and internal factors affect bioaccumulation. One of the major pathways for the uptake of trace metals is from solution directly through permeable surfaces including the gills. Changes in salinity and oxygen tension can modify the uptake characteristics from solution particularly in the case of interstitial water within sediments. Infaunal amphipods have direct contact with the sediment and the bioavailabilities of trace metals depend on the strength of the metal binding which is determined by a combination of properties including grain size, organic content, the presence of metals such as lead and iron as well as other ambient environmental conditions. Metal concentrations within amphipod bodies reflect the bioavailabilities of trace metals in their habitat. Body size is one of the major factors contributing to individual variability in trace metal concentrations within species. For some amphipod species, there are differences in trace metal accumulation with gender, breeding and developmental stage. In amphipods, accumulated body metal concentrations are the best biomarkers for environmental metal availabilities. Metal accumulation affects the ecology of crustaceans as a consequence of the energy costs associated with excreting and/or detoxifying the incoming metals. If the costs are significant, then this may result in reduced growth and reproduction. The effects of accumulated metals on communities have yet to be determined. Accumulated metals in crustacean prey species may be transferred along the food chain, but biomagnification in fish appears unlikely. One of the main ecological challenges is the need to link molecular biomarkers with ecologically relevant life history characteristics including growth, survival, reproduction and recruitment.  相似文献   

2.
Trace metals from anthropogenic activities are involved in numerous health impairments and may therefore select for detoxification mechanisms or a higher tolerance. Melanin, responsible for the black and red colourations of teguments, plays a role in metal ion chelation and its synthesis is positively linked to immunity, antioxidant capacity and stress resistance due to pleiotropic effects. Therefore, we expected darker birds to (1) store higher amounts of metals in their feathers, (2) maintain lower metal concentrations in blood and (3) suffer less from metal exposure. We exposed feral pigeons (Columba livia) exhibiting various plumage darkness levels to low, but chronic, concentrations of zinc and/or lead, two of the most abundant metals in urban areas. First, we found negative and positive effects of lead and zinc, respectively, on birds' condition and reproductive parameters. Then, we observed positive relationships between plumage darkness and both zinc and lead concentrations in feathers. Interestingly, though darker adults did not maintain lower metal concentrations in blood and did not have higher fitness parameters, darker juveniles exhibited a higher survival rate than paler ones when exposed to lead. Our results show that melanin‐based plumage colouration does modulate lead effects on birds' fitness parameters but that the relationship between metals, melanin, and fitness is more complex than expected and thus stress the need for more studies.  相似文献   

3.
Are metals dietary carcinogens?   总被引:13,自引:0,他引:13  
Humans have been in contact with metals almost since the beginning of our existence. In fact, one cannot even think on human evolution without considering the great role played by metals in mankind's development. Metals are common moieties of molecules involved in a wide variety of biological processes, and hence are found in virtually all living organisms. Some metals are essential for human nutrition; others are found as contaminants in foodstuffs. One feature of the normal human diet which is frequently found is the simultaneous presence of both essential and toxic metals. Other factors important in the risk-evaluation analysis of metals are their pharmacokinetics, interactions among them and with other major components of the diet, and, especially, the great differences in the dietary habits of different populations and in the regional distribution of metals. In attempting to understand the role which dietary metals could play in human carcinogenesis, we found that the many factors involved and the lack of specific information made it difficult to reach firm conclusions on the hazards of dietary metals. We hope that this paper will raise the interest of genetic toxicologists in the subject and will consequently facilitate a risk analysis of the carcinogenic potential of dietary metals.  相似文献   

4.
X-ray fluorescence microscopy was applied for two-dimensional elemental analysis of substantia nigra (SN) tissue. The samples representing Parkinson’s disease (PD) and control cases were examined at HASYLAB beamline L and at ESRF beamline ID22. Two-dimensional mapping of P, S, Cl, K, Ca, Fe, Cu, Zn, Se and Br was done with the spatial resolution of 15 and 5 μm. The masses per unit area of elements in neuromelanin reach nerve cells of SN were determined.The elemental data were processed using two multivariate techniques, namely cluster and discriminant analysis. The statistical methods were used for data reduction, both unsupervised and supervised classification as well as for the creation of a model that would simplify case identification based on the elemental analysis of SN tissue. The results of cluster analysis confirmed the statistical significance of the differences in elemental composition of PD and control SN nerve cells. Based on the results of discriminant analysis, the elements (P, Cl, Fe, Cu and Zn) that played the greatest role in the process of differentiation between neurons from examined groups were determined.  相似文献   

5.
BackgroundThe impact of chemical elements on the biosphere is a function of their concentration and chemical form. Elucidation and prognosing of the latters in water basins and soil extracts is of particular significance for the assessment of their bioaccumulation in plants and animals.ObjectivesTrace metals dynamics in the system water – soil–plant–wild ratsHymenolepis diminuta in two agro-industrial zones (East and West) around Maglizh city, Bulgaria were investigated through experimental studies and thermodynamic modelling of the chemical species.MethodsSamples from surface waters of rivers, their nearby uncultivated soils, meadow uncultivated vegetation (Ranunculus acris and Gramineae) and field rats were collected. In situ measurements and laboratory analyses were performed for the determination of the physico-chemical characteristics and total concentrations of Al, Fe, Mn, Ni, Cu, Zn and Pb. The distribution of their dissolved chemical species in water samples and in the aqueous soil extracts was calculated using a thermodynamic approach. The relationship chemical species - bioaccumulation was discussed.ResultsWaters and soils in the East zone of Maglizh area were found to be more polluted compared to those in the West one, regarding Ni, Mn, Zn, Pb and Cu, while Mn and Cu displayed the highest mobility in West zone soils. Trace metals contents in Ranunculus acris exceed that in Gramineae, since the highest accumulation factors were calculated for Cu and Zn. The highest accumulation in rats was found for Zn followed by Cu, being higher in the West zone. Thermodynamic modelling shows that Mn2+ free ions are dominant in both waters and aqueous soil extracts. Ni2+ and Zn2+ ions followed by metal-organic complexes are dominant in waters of East zone while metal-organic complexes followed by free ions are dominant in waters of West zone and both soil extracts. Metal-organic complexes are dominant for Fe, Cu and Pb in all samples studied, while mainly hydroxy forms (Al(OH)4) followed by metal-organic complexes are typically for Al depending on pH.ConclusionsExperimentally established bioaccumulation of trace metals in the studied vegetation and rats is a consequence of the total concentration of trace metals in waters and soils, their mobility and chemical species. The dominance of organic complexes of trace metals is a prerequisite for their bioaccumulation in plants. Rats are in direct contact with the soil solution and therefore, of importance is the content of free ions of Mn2+, Ni2+, Zn2+, which are easily absorbed through the skin. The host-helminth system wild rat/H. diminuta could be used as a bioindicator for trace metals pollution.  相似文献   

6.
The rubidium content of whole blood was estimated by instrumental neutron activation analysis. In 46 healthy children it amounts to {ie193-1} g/g dry weight. There was no difference between the values found for infants, toddlers, and school children. In 29 dietetically treated patients with phenylketonuria and maple-syrup-urine disease the values were significantly lower than in healthy children. During the first three months of diet therapy the rubidium levels remained in the lower range of the normal values, decreasing to about 60% of the mean of normal values later on. With increasing length of diet therapy these values tended to decrease. It remains questionable whether these decreased levels reflect only an induced biochemical phenomenon without biological importance, or whether they are the first signs of a deficiency syndrome.  相似文献   

7.
If chromium is an essential metal it must have a specific role in an enzyme or cofactor, and a deficiency should produce a disease or impairment of function. To date, no chromium-containing glucose tolerance factor has been characterized, the purpose of the low-molecular-weight chromium-binding protein is questionable, and no direct interaction between chromium and insulin has been found. Furthermore, chromium3+ is treated like the toxic metals arsenic, cadmium, lead and mercury in animals. Chromium3+ may be involved in chromium6+-induced cancers because chromium6+ is converted to chromium3+ in vivo, and chromium3+ is genotoxic and mutagenic. Although there is no direct evidence of chromium deficiencies in humans, dietary supplements exist to provide supraphysiological doses of absorbable chromium3+. Chromium3+ may act clinically by interfering with iron absorption, decreasing the high iron stores that are linked to diabetes and heart disease. If so, this would make chromium3+ a pharmacological agent, not an essential metal.  相似文献   

8.
9.
Brown DR 《The FEBS journal》2007,274(15):3766-3774
alpha-synuclein is one of a family of proteins whose function remains unknown. This protein has become linked to a number of neurodegenerative disease although its potential causative role in these diseases remains mysterious. In diseases such as Parkinson's disease and Lewy body dementias, alpha-synuclein becomes deposited in aggregates termed Lewy bodies. Also, some inherited forms of Parkinson's diseases are linked to mutations in the gene for alpha-synuclein. Studies have mostly focussed on what causes the aggregation of the protein but, like many amyloidogenic proteins associated with a neurodegenerative disorder, this protein has now been suggested to bind copper. This finding is currently controversial. This review examines the evidence that alpha-synuclein is a copper binding protein and discusses whether this has any significance in determining the function of the protein or whether copper binding is at all necessary for aggregation.  相似文献   

10.
Farmers have used metal compounds in phytosanitary treatments for more than a century; however, it has recently been suggested that plants absorb high concentrations of metals from the substrate as a self-defense mechanism against pathogens and herbivores. This metal defense hypothesis is among the most attractive proposals for the 'reason to be' of metal hyperaccumulator species. On a molecular basis, metal defense against biotic stress seems to imply common and/or complementary pathways of signal perception, signal transduction and metabolism. This does not imply a broad band of co-resistance to different stress types but reflects a continuous cross talk during the coevolution of plants, pathogens and herbivores competing in an environment where efficient metal ion acquisition and ion homeostasis are essential for survival.  相似文献   

11.
12.
13.
DMT1: which metals does it transport?   总被引:2,自引:0,他引:2  
DMT1-Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 - transports Fe2+ into the duodenum and out of the endosome during the transferrin cycle. DMTI also is important in non-transferrin bound iron uptake. It plays similar roles in Mn2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are substrates for DMT1. This report summarizes progress on which metals DMT1 transports, focusing on results from the authors' labs. We recently cloned 1A/+IRE and 2/-IRE DMT1 isoforms to generate HEK293 cell lines that express them in a tetracycline-inducible fashion, then compared induced expression to uninduced expression and to endogenous DMT1 expression. Induced expression increases approximately 50x over endogenous expression and approximately 10x over uninduced levels. Fe2+, Mn2+, Ni2+ and Cu1+ or Cu2+ are transported. We also explored competition between metal ions using this system because incorporation essentially represents DMT1 transport and find this order for transport affinity: Mn>?Cd>?Fe>Pb-Co-Ni>Zn. The effects of decreased DMT1 also could be examined. The Belgrade rat has diminished DMT1 function and thus provides ways of testing. A series of DNA constructs that generate siRNAs specific for DMT1 or certain DMT1 isoforms yield another way to test DMT1-based transport.  相似文献   

14.
Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the  相似文献   

15.
Luoma  Samuel N. 《Hydrobiologia》1989,176(1):379-396
It is clear from available data that the susceptibility of biological communities to trace element contamination differs among aquatic environments. One important reason is that the bioavailability of metals in sediments appears to be altered by variations in sediment geochemistry. However, methods for explaining or predicting the effect of sediment geochemistry upon metal bioavailability are poorly developed. Experimental studies demonstrate that ingestion of sediments and uptake from solution may both be important pathways of metal bioaccumulation in deposit/detritus feeding species. Relative importance between the two is geochemistry dependent. Geochemical characteristics of sediments also affect metal concentrations in the tissues of organisms collected from nature, but the specific mechanisms by which these characteristics influence metal bioavailability have not been rigorously demonstrated. Several prerequisites are necessary to better understand the processes that control metal bioavailability from sediments. 1) improved computational or analytical methods for analyzing distribution of metals among components of the sediments; 2) improved computational methods for assessing the influences of metal form in sediments on sediment-water metal exchange; and 3) a better understanding of the processes controlling bioaccumulation of metals from solution and food by metazoan species directly exposed to the sediments. Such capabilities would allow mechanistic explanations essential to the development of practical tools sought for determining sediment quality criteria for metals.  相似文献   

16.
Ulltrastructural and trace metal studies on radiographers’ hair and nails   总被引:2,自引:0,他引:2  
Scalp hair and fingernail samples of 42 medical radiographers and 42 nonradiographers (control) with matching age groups and food habits were collected for this study. Trace metal estimation by atomic absorption spectrometry (AAS) has indicated a significant increase (P < 0.001) in Zn, Cu, and Cd contents in the radiographers’ hair and nails. Scanning electron microscopy (SEM) reveled structural changes in the hair and nails of radiographers. Significant alterations in the Zn and Cd contents along with extensive structural damage in the hair and nails probably indicate that low-dose Χ-radiation imposes stress on these radiation workers.  相似文献   

17.
In order to study the involvement of metals in the progression of Alzheimer’s disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer’s disease.  相似文献   

18.
《Inorganica chimica acta》1988,144(2):265-268
A new ligand, 1,1′-diacetylferrocene benzoylhydrazone and its 15 rare earth(III) chelates have been synthesized. The IR, UV, TG—DTA and electrolytic conductivity of the ligand and its chelates are discussed. The data show that the ligand coordinates with metal ions in the keto form rather than in the enol form. The chelates are more thermostable than the ligand and are 1:2 electrolytes in dimethyl formamide.  相似文献   

19.
Hydrobiologia - Mining activities often produce large amounts of pollutants that lead to streams affecting aquatic biota. Aquatic insects have a key role in energy transference from streams to...  相似文献   

20.
Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca2+-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe2+, Ca2+ and Zn2+ transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号