首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The strength of sexual selection may vary between species, among populations and within populations over time. While there is growing evidence that sexual selection may vary between years, less is known about variation in sexual selection within a season. Here, we investigate within‐season variation in sexual selection in male two‐spotted gobies (Gobiusculus flavescens). This marine fish experiences a seasonal change in the operational sex ratio from male‐ to female‐biased, resulting in a dramatic decrease in male mating competition over the breeding season. We therefore expected stronger sexual selection on males early in the season. We sampled nests and nest‐holding males early and late in the breeding season and used microsatellite markers to determine male mating and reproductive success. We first analysed sexual selection associated with the acquisition of nests by comparing nest‐holding males to population samples. Among nest‐holders, we calculated the potential strength of sexual selection and selection on phenotypic traits. We found remarkable within‐season variation in sexual selection. Selection on male body size related to nest acquisition changed from positive to negative over the season. The opportunity for sexual selection among nest‐holders was significantly greater early in the season rather than late in the season, partly due to more unmated males. Overall, our study documents a within‐season change in sexual selection that corresponds with a predictable change in the operational sex ratio. We suggest that many species may experience within‐season changes in sexual selection and that such dynamics are important for understanding how sexual selection operates in the wild.  相似文献   

3.
Size‐assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size‐assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex‐role reversal, and a polygynandrous mating system. We take advantage of microsatellite‐based “genetic‐capture” techniques to match wild‐caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size‐assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size‐assortative mating. Contrary to expectations, we were unable to find any evidence of size‐assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory‐based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.  相似文献   

4.
Studies of MHC‐based mate choice in wild populations often test hypotheses on species exhibiting female choice and male–male competition, which reflects the general prevalence of females as the choosy sex in natural systems. Here, we examined mutual mate‐choice patterns in a small burrow‐nesting seabird, the Leach’s storm‐petrel (Oceanodroma leucorhoa), using the major histocompatibility complex (MHC). The life history and ecology of this species are extreme: both partners work together to fledge a single chick during the breeding season, a task that requires regularly travelling hundreds of kilometres to and from foraging grounds over a 6‐ to 8‐week provisioning period. Using a 5‐year data set unprecedented for this species (n = 1078 adults and 925 chicks), we found a positive relationship between variation in the likelihood of female reproductive success and heterozygosity at Ocle‐DAB2, a MHC class IIB locus. Contrary to previous reports rejecting disassortative mating as a mechanism for maintaining genetic polymorphism in this species, here we show that males make significant disassortative mate‐choice decisions. Variability in female reproductive success suggests that the most common homozygous females (Ocle‐DAB2*01/Ocle‐DAB2*01) may be physiologically disadvantaged and, therefore, less preferred as lifelong partners for choosy males. The results from this study support the role of mate choice in maintaining high levels of MHC variability in a wild seabird species and highlight the need to incorporate a broader ecological framework and sufficient sample sizes into studies of MHC‐based mating patterns in wild populations in general.  相似文献   

5.
Across taxa, extra‐pair mating is widespread among socially monogamous species, but few studies have identified male ornamental traits associated with extra‐pair mating success, and even fewer studies have experimentally manipulated male traits to determine whether they are related directly to paternity. As a consequence, there is little experimental evidence to support the widespread hypothesis that females choose more ornamented males as extra‐pair mates. Here, we conducted an experimental study of the relationship between male plumage colour and fertilization success in tree swallows (Tachycineta bicolor), which have one of the highest levels of extra‐pair mating in birds. In this study, we experimentally dulled the bright blue plumage on the back of males (with nontoxic ink markers) early in the breeding season prior to most mating. Compared with control males, dulled males sired fewer extra‐pair young, and, as a result, fewer young overall. Among untreated males, brighter blue males also sired more extra‐pair young, and in paired comparisons, extra‐pair sires had brighter blue plumage than the within‐pair male they cuckolded. These results, together with previous work on tree swallows, suggest that extra‐pair mating behaviour is driven by benefits to both males and females.  相似文献   

6.
Abstract 1. The flexibility of hymenopteran sex ratios is well documented, particularly in structured populations featuring sib mating. 2. Using game theoretic models, the present study examines species producing single‐sex broods in which sib mating is unlikely, and focuses on the role of population density in determining evolutionarily stable oviposition strategies. 3. Since only mated females can produce offspring of both sexes while unmated females produce only male offspring, mated females are under selection to produce more females overall to balance the primary sex ratio. 4. As the proportion of all females that are mated should increase with density, offspring sex ratio of mated females is strongly linked to density at low to moderate densities. The present study shows that when density becomes low enough for fewer than half of all females to have mated, then female offspring generate higher fitness. 5. In this low density situation, females may gain a fitness benefit from waiting at their emergence site or from using other costly means to find and mate with males before ovipositing. 6. The predicted correspondence between females waiting at the emergence site and fewer than half of females in the population containing sperm, can be tested empirically, as can the somewhat counter‐intuitive prediction that greater access to males should yield a more male‐biased sex ratio in the offspring of mated females. 7. The present study also indicates how measuring the variance in giving up times by females waiting for males at low density, can provide insight into mechanisms determining waiting times.  相似文献   

7.
The roles of females and males in mating competition and mate choice have lately proven more variable, between and within species, than previously thought. In nature, mating competition occurs during mate search and is expected to be regulated by the numbers of potential mates and same-sex competitors. Here, we present the first study to test how a temporal change in sex roles affects mating competition and mate choice during mate sampling. Our model system (the marine fish Gobiusculus flavescens) is uniquely suitable because of its change in sex roles, from conventional to reversed, over the breeding season. As predicted from sex role theory, courtship was typically initiated by males and terminated by females early in the breeding season. The opposite pattern was observed late in the season, at which time several females often simultaneously courted the same male. Mate-searching females visited more males early than late in the breeding season. Our study shows that mutual mate choice and mating competition can have profound effects on female and male behavior. Future work needs to consider the dynamic nature of mating competition and mate choice if we aim to fully understand sexual selection in the wild.  相似文献   

8.
Female‐biased sexual size dimorphism (SSD) is often considered an epiphenomenon of selection for the increased mating opportunities provided by early male maturation (i.e., protandry). Empirical evidence of the adaptive significance of protandry remains nonetheless fairly scarce. We use field data collected throughout the reproductive season of an SSD crab spider, Mecaphesa celer, to test two hypotheses: Protandry provides fitness benefits to males, leading to female‐biased SSD, or protandry is an indirect consequence of selection for small male size/large female size. Using field‐collected data, we modeled the probability of mating success for females and males according to their timing of maturation. We found that males matured earlier than females and the proportion of virgin females decreased abruptly early in the season, but unexpectedly increased afterward. Timing of female maturation was not related to clutch size, but large females tended to have more offspring than small females. Timing of female and male maturation was inversely related to size at adulthood, as early‐maturing individuals were larger than late‐maturing ones, suggesting that both sexes exhibit some plasticity in their developmental trajectories. Such plasticity indicates that protandry could co‐occur with any degree and direction of SSD. Our calculation of the probability of mating success along the season shows multiple male maturation time points with similar predicted mating success. This suggests that males follow multiple strategies with equal success, trading‐off access to virgin females with intensity of male–male competition. Our results challenge classic hypotheses linking protandry and female‐biased SSD, and emphasize the importance of directly testing the often‐assumed relationships between co‐occurring animal traits.  相似文献   

9.
The sex ratio behavior of parasitoid wasps in the genus Melittobia is scandalous. In contrast to the prediction of Hamilton's local mate competition theory, and the behavior of numerous other species, their extremely female‐biased sex ratios (1–5% males) change little in response to the number of females that lay eggs on a patch. We examined the mating structure and fitness consequences of adjusting the sex ratio in M. australica and found that (1) the rate of inbreeding did not differ from that expected with random mating within each patch; (2) the fitness of females that produced less female‐biased sex ratios (10 or 20% males) was greater than that of females who produced the sex ratio normally observed in M. australica. These results suggest that neither assortative mating nor asymmetrical competition between males can explain the extreme sex ratios. More generally, the finding that the sex ratios produced by females led to a decrease in their fitness suggests that the existing theory fails to capture a key aspect of the natural history of Melittobia, and emphasizes the importance of examining the fitness consequences of different sex ratio strategies, not only whether observed sex ratios correlate with theoretical predictions.  相似文献   

10.
In sex‐role‐reversed species, sexual selection acts more strongly on females than on males, a situation that can result in the evolution of secondary sexual traits in females and strong mating preferences in males. While some research exploring mating preferences in sex‐role‐reversed species has been conducted, overall, this topic remains relatively unexplored. The Gulf pipefish, Syngnathus scovelli, is a highly polyandrous pipefish species. Sexual selection is significantly stronger in females than in males, which has led to the evolution of both morphological and behavioral female secondary sexual traits. However, because males gestate the offspring in specialized pouches and make a substantial investment in embryos during development, females may also benefit from being choosy. The goal of this study was to examine both male and female mating preferences in this species. We found that male mating preference was significantly associated with female courtship behavior. Larger females were also able to maintain these behaviors for longer intervals than smaller females. No evidence of female mating preference in regard to male size was observed but the data suggest that male behaviors may be providing positive reinforcement to courting females. This research provides further insight into how mate preferences vary among sex‐role‐reversed species.  相似文献   

11.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

12.
Sex allocation theory has long generated insights into the nature of natural selection. Classical models have elucidated causal phenomena such as local mate competition and inbreeding on the degree of female bias exhibited by various invertebrates. Typically, these models assume mothers facultatively adjust sex allocation using predictive cues of future offspring mating conditions. Here we relax this assumption by developing a sex allocation model for haplodiploid mothers experiencing local mate competition that lay a fixed number of male eggs first. Female egg number is determined by remaining oviposition sites or remaining eggs of the mother, depending on which is exhausted first. Our model includes parameters for variation in foundress number, patch size, fecundity and offspring mortality that allow us to generate secondary sex ratio predictions based on specific parameterizations for natural populations. Simulations show that: 1) in line with classical models, factors that increase sib‐mating result in mothers laying relatively more female eggs; 2) high offspring mortality leads to relatively more males as fertilization insurance; 3) unlike classical model predictions, sub‐optimal predictions, such as more males than females are possible. In addition, our model provides the first quantitative predictions for the expected number of males and females in a patch where typically only one mother utilizes a given patch. We parameterized the model with data obtained from seven species of southern African fig wasps to predict expected means and variances for numbers of male and female offspring for typical numbers of mothers utilizing a patch. These predictions were compared to secondary sex ratio data from single foundress patches, the most commonly encountered situation for these species. Our predictions matched both the observed number and variance of male and female offspring with a high degree of accuracy suggesting that facultative adjustment is not required to produce evolutionary stable sex ratios.  相似文献   

13.
In many sexually reproducing species, females are sperm limited and actively mate more than once which can lead to sperm competition between males. However, the costs and benefits of multiple matings may differ for males and females leading to different optimal mating frequencies and consequent sexual conflict. Under these circumstances, male traits that reduce females' re‐mating rates are likely to evolve. However, the same traits can also reduce, directly or indirectly, female survival and/or manipulate female fecundity. Evidence of this sexual conflict is common across several taxa. Here, we examine the evidence for this form of conflict in the free‐living nematodes of the Caenorhabditis genus. Members of this group are extensively used to describe developmental and physiological processes. Despite this, we understand little about the evolution of selfing, maintenance of males and sexual conflict in these species, particularly those with gonochoristic mating strategies. In this study, we demonstrate experimentally sexual conflict in the gonochoristic of C. remanei cultured under laboratory conditions. In our first experiment, we found that female fecundity increased with the number of males present which suggests that females' reproduction may be sperm limited. However, increasing the number of males present also reduced female survival. A second experiment ruled out the alternative explanation of density‐dependent reduction in female survival when more males were present as increasing female density correspondingly did not affect female survival. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 362–369.  相似文献   

14.
The intensity of mating competition and the potential benefits for female of mating with certain males can be influenced by several extrinsic factors, such that behavioral decisions can be highly context-dependent. Short-lived species with a single reproductive season are a unique model to study context-sensitive mating decisions. Through exhaustive sampling in the field and simultaneous choice tests in the laboratory, we evaluated operational sex ratio (OSR) and female mate choice at the beginning and end of the reproductive season in the annual killifish Austrolebias reicherti. We found seasonal change in both OSR and female mate choice. At the start of the reproductive season the OSR did not deviate from parity, and females preferred larger males. Later in the reproductive season, while the proportion of males in the ponds decreased, females became unselective with respect to male size. The particular biological cycle of annual killifish, where both life expectancy and mating opportunities decline sharply over a short timescale, could account for the seasonal change in female choice. Reduction in choosiness could arise from diminished reproductive prospects due to a decline in male availability. Moreover, as the end of the season approaches, any benefits of choosiness are presumably reduced: a female’s fitness will be higher if she mates with any male than if she forgoes reproduction and dies. Future work will disentangle the mechanisms underlying seasonal changes in mating preferences, notably direct responses to demographic factors, environmental cues, or intrinsic changes during development.  相似文献   

15.
The oriental beetle, Anomala orientalis (Waterhouse) (Col., Scarabaeidae), is the most important root‐feeding pest of blueberries and turfgrass in New Jersey, USA. Previous studies showed that mating disruption is a feasible option for oriental beetle management; however, assessing its efficiency can be challenging, and little is known on its long‐term effects. Accordingly, we conducted studies to investigate low‐dose pheromone lures equivalent to oriental beetle females (i.e. female mimics) as easy‐to‐use indicators of mating disruption success, determine the distance at which oriental beetle males respond to female‐mimic lures and assess the long‐term (3‐year) effects of mating disruption on oriental beetle populations in entire blueberry fields. Our studies showed that rubber septa baited with 0.3 μg of the oriental beetle sex pheromone (Z)‐7‐tetradecen‐2‐one attract similar numbers of males as compared with virgin females and can thus be used as a female mimic. The range of attraction of this lure was found to be also similar to virgin females and <30 m. In blueberries, mating disruption provided 87% inhibition of oriental beetle populations (trap shutdown) over a 3‐year period. Oriental beetle male captures in disrupted fields were threefold higher along the field edges than in the field interiors, indicating movement of males from nearby areas into the pheromone‐treated fields. In addition, mating disruption reduced male attraction to female‐mimic lures by 93% in all 3 years and reduced the number of larvae in sentinel potted plants in 1 of 2 years. These results show for the first time that mating disruption provides consistent long‐term field‐wide control of oriental beetle populations and that female‐mimic pheromone lures can be used as a new tool to assess oriental beetle mating disruption success.  相似文献   

16.
Sexual selection theory predicts a positive correlation between relative parental investment and mate choice. In syngnathid fishes (seahorses and pipefish), males brood offspring in specialized brooding structures. While female-female mating competition has been demonstrated in some pipefishes, all seahorses (genus Hippocampus) studied to date have been found to have conventional sex roles with greater male-male competition for access to mates despite possessing the most complex brood structures in the family. Although multiple mating is common in pipefish, seahorses are again exceptional, exhibiting strict genetic monogamy. Both demographic and behavioural explanations have been offered to explain the lack of multiple mating in seahorse species, but these hypotheses have not yet been explicitly addressed. We investigated mating systems and brood parentage of the pot-bellied seahorse, Hippocampus abdominalis, a temperate-water species that is socially promiscuous with conventional sex roles in laboratory populations. We observed promiscuous courtship behaviour and sex-role reversal in high density, female-biased field populations of H. abdominalis. We hypothesize that sex roles are plastic in H. abdominalis, depending on local population density and sex ratio. Despite promiscuous courtship behaviour, all assayed male seahorses were genetically monogamous in both laboratory and wild populations. Physiological limitations associated with embryo incubation may explain the absence of multiple mating in seahorses and may have played an important role in the development of the unique reproductive behaviour typical in these species.  相似文献   

17.
In hymenopterans, males are normally haploid (1n) and females diploid (2n), but individuals with divergent ploidy levels are frequently found. In species with ‘complementary sex determination’ (CSD), increasing numbers of diploid males that are often infertile or unviable arise from inbreeding, presenting a major impediment to biocontrol breeding. Non‐CSD species, which are common in some parasitoid wasp taxa, do not produce polyploids through inbreeding. Nevertheless, polyploidy also occurs in non‐CSD Hymenoptera. As a first survey on the impacts of inbreeding and polyploidy of non‐CSD species, we investigate life‐history traits of a long‐term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) (‘Whiting polyploid line’) in which polyploids of both sexes (diploid males, triploid females) are viable and fertile. Diploid males produce diploid sperm and virgin triploid females produce haploid and diploid eggs. We found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan. When diploid males were mated to many females (without accounting for mating order), the females produced a relatively high proportion of male offspring, possibly indicating that these males produce less sperm and/or have reduced sperm functionality. In triploid females, parasitization rate and fecundity were reduced and body size was slightly increased, but there was no effect on lifespan. After one generation of outbreeding, lifespan as well as parasitization rate were increased, and a body size difference was no longer apparent. This suggests that outbreeding has an effect on traits observed in an inbred polyploidy background. Overall, these results indicate some phenotypic detriments of non‐CSD polyploids that must be taken into account in breeding.  相似文献   

18.
When males provide females with resources at mating, they can become the limiting sex in reproduction, in extreme cases leading to the reversal of typical courtship roles. The evolution of male provisioning is thought to be driven by male reproductive competition and selection for female fecundity enhancement. We used experimental evolution under male‐ or female‐biased sex ratios and limited or unlimited food regimes to investigate the relative roles of these routes to male provisioning in a sex role‐reversed beetle, Megabruchidius tonkineus, where males provide females with nutritious ejaculates. Males evolving under male‐biased sex ratios transferred larger ejaculates than did males from female‐biased populations, demonstrating a sizeable role for reproductive competition in the evolution of male provisioning. Although larger ejaculates elevated female lifetime offspring production, we found little evidence of selection for larger ejaculates via fecundity enhancement: males evolving under resource‐limited and unlimited conditions did not differ in mean ejaculate size. Resource limitation did, however, affect the evolution of conditional ejaculate allocation. Our results suggest that the resource provisioning that underpins sex role reversal in this system is the result of male–male reproductive competition rather than of direct selection for males to enhance female fecundity.  相似文献   

19.
Sex differences in adult mortality may be responsible for male‐skewed adult sex ratios and male‐skewed parental care in some birds. Because a surplus of breeding males has been reported in serially polyandrous populations of Snowy Plover Charadrius alexandrinus, we examined sex ratio, early‐season nesting opportunities, adult survival and annual reproductive success of a Snowy Plover population at Monterey Bay, California. We tested the hypotheses that male adult survival was greater than female survival and that a sex difference in adult survival led to a skewed adult sex ratio, different mating opportunities and different annual productivity between the sexes. Virtually all females left chicks from their first broods to the care of the male and re‐nested with a new mate. As a result, females had time to parent three successful nesting attempts during the lengthy breeding season, whereas males had time for only two successful attempts. Among years, the median population of nesting Plovers was 96 males and 84 females (median difference = 9), resulting in one extra male per eight pairs. The number of potential breeders without mates during the early nesting period each year was higher in males than in females. Adult male survival (0.734 ± 0.028 se) was higher than female survival (0.693 ± 0.030 se) in top‐ranked models. Annually, females parented more successful clutches and fledged more chicks than their first mates of the season. Our results suggest that in C. alexandrinus a sex difference in adult survival results in a male‐skewed sex ratio, which creates more nesting opportunities and greater annual productivity for females than for males.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号