首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Local spatial variation in species distributions is driven by a mix of abiotic and biotic factors, and understanding such hierarchical variation is important for conservation of biodiversity across larger scales. We sought to understand how variation in species composition of understory vascular plants, spiders, and carabid beetles is associated with concomitant spatial variation in forest structure on a 1‐ha permanent plot in a never‐cut mixedwood forest in central Alberta (Canada). Using correlations among dendrograms produced by cluster analysis we associated data about mapped distribution of all living and dead stems > 1 cm diameter at breast height with distributions of the three focal taxa sampled from regular grids across the plot. Variation in each of these species assemblages were significantly associated with several forest structure variables at various spatial scales, but the scale of the associations varied among assemblages. Variation in species richness and abundance was explained mostly by changes in basal area of trees across the plot; however, other variables (e.g. snag density and tree density) were also important, depending on assemblage. We conclude that fine‐scale habitat variation is important in structuring spatial distribution of the species of the forest floor, even within a relatively homogeneous natural forest. Thus, assessments that ignore within‐stand heterogeneity and management that ignores its maintenance will have limited utility as conservation measures for these taxa, which are major elements of forest biodiversity.  相似文献   

2.
Fire is a common disturbance in many ecosystems, including arid Australia. Understanding whether fauna respond in a deterministic manner towards a single end‐point, or to multiple states, is of crucial importance for conservation management. Why different taxa or assemblages display single or multiple end‐points is also important to develop a synthetic theory of succession. To examine the post‐fire changes in assemblages of spiders, we established a chronosequence study in spinifex habitat of central Western Australia. Ground‐active spiders were pitfall‐trapped over nine months in sites representing experimental fires (0 and 0.5 years post‐fire) and wildfires (3, 5, 8 and 20 years post‐fire). There were significant non‐linear changes in species richness, evenness and composition of spiders with increasing post‐fire age. For all three measures, the assemblage appeared highly deterministic, converging towards the long unburnt state. Similarity in richness, evenness and species composition to the 20‐year‐old sites all increased with increasing time since fire (3–8 years). However, experimentally burnt sites did not neatly fit this sequence. We consider two alternative hypotheses to explain this second trajectory: inertia within the system or the rapid migration and recolonization from nearby surrounding unburnt areas. Analyses indicated that half of the 179 species had significant preferences for, or were restricted to, particular post‐fire ages. This suggests that adequate pyrodiversity, both in terms of post‐fire ages and/or scale and intensity of fires, may be important for the conservation of spiders in this habitat. However, owing to the high number of singletons and low indicator values, the significance of this result for conservation management remains equivocal. Despite this, the high degree of determinism provides hope that managers can develop a good predictive understanding of post‐fire successional changes in spider assemblages in arid Australia.  相似文献   

3.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

4.
Logging is the main human disturbance in the boreal forest; thus, understanding the effects of harvesting practices on biodiversity is essential for a more sustainable forestry. To assess changes in spider composition because of harvesting, samples were collected from three forest layers (overstory, understory, and ground) of deciduous and conifer dominated stands in the northwestern Canadian boreal mixedwood forest. Spider assemblages and feeding guild composition were compared between uncut controls and stands harvested to 20% retention. In total, 143 spider species were collected, 74 from the ground, 60 from the understory, and 71 from the overstory, and species composition of these three pools differed considerably among layers. Distinctive spider assemblages were collected from the canopy of each forest cover type but these were only slightly affected by harvesting. However, logging had a greater impact on the species composition in the understory and ground layers when compared with unharvested controls. Guild structure differed among layers, with wandering and sheet-weaving spiders dominant on the ground while orb-weaving and ambush spiders were better represented in the understory and overstory, respectively. Given the ecological importance of spiders and the expectation of faunal changes with increased harvesting, further efforts toward the understanding of species composition in higher strata of the boreal forest are needed.  相似文献   

5.
Jack pine barrens, once common in northern lower Michigan, mostly have been converted to managed jack pine plantations. Management of the disturbances associated with logging provides the opportunity to maintain the unique plant assemblages of jack pine barrens and nest habitat of the federally endangered Kirtland's warbler. Studies indicate that Carex pensylvanica can develop into dense mats and strongly compete with other barrens species such as Vaccinium angustifolium, which seem to be important species for Kirtland's warbler nest locations. According to forest managers, the most important factors facilitating high cover of V. angustifolium and reducing cover of C. pensylvanica are the amount of shade produced by tree crowns before harvest (pre‐harvest shade), the length of time between harvest and planting (planting delay), and fire. We found that high or low levels of pre‐harvest shade had no effect on cover of either V. angustifolium or C. pensylvanica. Planting delays of at least three years following prescribed burns generally increased cover of V. angustifolium in forest plots, which are important for warbler nesting. Analysis of community composition in openings indicated that burning enhanced the growth of barrens species. We found only weak evidence for a negative correlation between the cover of V. angustifolium and C. pensylvanica on our study sites. The openings created in the jack pine plantation are important refugia for barrens flora that would likely be lost under forests managed strictly for jack pine. Maintenance of jack pine barrens flora and Kirtland's warbler nest habitat is possible within the context of a heavily managed forest plantation system.  相似文献   

6.
Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty‐two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time‐since‐fire or are there unique influences associated with long‐term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post‐fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time‐since‐fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old‐growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems.  相似文献   

7.
We made intensive samplings to study the seasonal response of spiders across different forest strata (ground and understory) in a tropical mountain cloud forest from Mexico. We sampled spiders from ten plots in six sampling events during the dry and rainy season, to analyze their abundance, structure (distribution of abundance among species), diversity and the response of the five dominant species at each stratum. Results demonstrated that seasonal patterns of spider communities differed among strata, revealing a complex spatiotemporal dynamic. Abundance, structure, diversity of ground spiders, as well as the responses of four dominant species at this stratum, showed low seasonal variations. In contrast, a strong seasonal variation was observed for the understory assemblage, with lowest abundance and highest diversity in the rainy season, and different assemblage structures for each season. Seasonal patterns of each assemblage seem linked to the responses of their dominant species. We found high co‐occurrence among most of the ground dominant species with similar habitat use and with multivoltine patterns, contrasting with low co‐occurrence among most of the understory dominant species with similar habitat use and univoltine patterns. Our results showed that the spiders’ assemblages of tropical mountain cloud forest (opposed to what is found in temperate and boreal forests) increase their species richness with the height, and that their responses to seasonal change differ between strata. Management programs of these habitats should consider the spatial and temporal variations found here, as a better understanding of their ecological dynamics is required to support their sustainable management.  相似文献   

8.
Questions: What were the bog fire patterns and frequencies in two boreal peatlands during the last 5000 years? What is the nature and time‐scale of post‐fire vegetation successions? Were fire events related to climate? Location: Männikjärve bog, central east Estonia; Kontolanrahka bog, southwest Finland. Methods: Macroscopic charcoal, plant macrofossils and radiocarbon dating were examined. Redundancy analysis was used in the assessments. Results: During the last 5000 years, both of the above peatlands have experienced several fire events. A typical pre‐fire vegetation community consisted of dry hummock Sphagnum spp., often accompanied by Calluna vulgaris. Only the most severe occasional fires resulted in a dramatic change in the vegetation composition. In these cases, a wet shift occurred, where the pre‐fire hummock community was replaced by a wet hollow community. Calluna vulgaris was found to be a key species in both pre‐ and post‐fire vegetation dynamics. The recovery time of dry microtopes following severe combustion and the subsequent hydrological change could take up to 350 years. Even after a long‐lasting wet phase, the post‐fire disturbance succession led towards a dry hummock community. Conclusions: Fire succession appeared to be cyclic, starting as and developing towards a dry hummock community. Fires have been a regular phenomenon in boreal bogs, even in regions with rather low human impact. The fire history records did not indicate any direct link to the regional long‐term climate.  相似文献   

9.
California sage scrub (CSS), a native ecosystem type of low‐elevation areas of Southern California, is increasingly threatened by urban development, altered fire regimes, and vegetation‐type conversion to non‐native grasslands. Using pitfall traps, we examined how suburbanization, type conversion, and fire influence ground‐dwelling spider assemblages in eastern Los Angeles County, CA, by surveying spiders in three habitats (CSS, non‐native grasslands, and suburban areas) before and after a fire that occurred in a small portion of our study site. Spider assemblages in the suburban habitat differed from those in CSS and non‐native grassland habitats, but CSS and grassland assemblages did not significantly differ. This suggests that the urban development, but not vegetation‐type conversion to non‐native grasslands, has significant effects on ground‐dwelling spider assemblages. Fire had no observable effect on assemblages. Because ground‐dwelling spiders were not impacted by fire and type conversion, increased fire frequencies, which often result in the establishment of non‐native grasses, may not deleteriously influence this animal group, a differing pattern from other taxonomic groups. However, the rapid urban development occurring in low‐elevation areas of Southern California means that species requiring non‐suburban sites for their survival (15 species, 24.1%) may be threatened and require conservation assessment.  相似文献   

10.
Ground beetle assemblages were monitored at four tallgrass prairie sites burned on 3-year cycles in northeastern Iowa. The objectives of this study were to quantify differences in carabid communities between original and reconstructed tallgrass prairies, and to determine the responses of ground beetles to 3-year cycles of early spring fire commonly used to manage tallgrass prairies. Using pitfall traps, ground beetle assemblages in two original and two reconstructed tallgrass prairies were compared between 1994 and 1998, where beetles were sampled annually (0-, 1-, and 2-year post-fire conditions) from plots burned every 3 years. When burned, the greatest abundance, activity density, and species richness of carabid beetles occurred the year immediately following a spring burn, with abundance declining steadily with increased time since burning. Overall ground beetle diversity as determined by Shannon's diversity index was greatest in original tallgrass prairies several years after a fire. Some species of ground beetles were found only in original prairies, while others were found primarily in reconstructed prairie. Similarly, some species were more abundant the year immediately following a burn, while others were found in greater abundance with increased time since fire. NMS ordination and indicator species analysis clearly show differences in carabid species between original and reconstructed tallgrass prairies, but did not show differences among burn treatments.  相似文献   

11.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

12.
To test whether spider succession following harvest differed from succession following wildfire, spiders were collected by pitfall trapping and sweep netting over two years in aspen-dominated boreal forests. Over 8400 individuals from 127 species of spiders were identified from 12 stands representing three age-classes (stand origin in 1995, 1982, and 1968) and two disturbance types (wildfire and harvesting). The diversity of spider assemblages tended to be higher in fire-origin stands than in harvest-origin stands; the youngest fire-origin stands also supported more even distributions of spider species. Spider assemblages responded quickly to wildfire and harvesting as open habitat specialists colonized stands within one year after disturbance. Many web-building species common to older forests either survived harvesting, or re-colonized harvest-origin stands more rapidly than they re-colonized fire-origin stands. Cluster analyses and DCA ordination show faunal convergence by ca 30 years after wildfire and harvesting; trajectories in re-colonization, however, differed by disturbance type as the succession of spider assemblages from fire-origin stands lagged behind spider succession in harvest-origin stands. Comparison with cluster analyses using vegetation data and abiotic site conditions suggests spider assemblages recover from harvesting and fire more rapidly than do a variety of other site characteristics. Several spider species (e.g. Gnaphosa borea Kulezyński, Pirata bryantae Kurata, Arctosa alpigena (Doleschall)) appear dependent on some of the conditions associated with wildfires as they were absent or rarely collected in harvest-origin stands.  相似文献   

13.
Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.  相似文献   

14.
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post‐fire growth. We compared survival and growth rates of regenerating small‐sized individuals (juveniles) of woody tree species after dry season fire (February–March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3‐mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast‐growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre‐monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire‐tolerant size during favorable conditions.  相似文献   

15.
Climate change is expected to cause major consequences on biodiversity. Understanding species‐specific reactions, such as species shifts, species declines, and changes in population dynamics is a key issue to quantify large‐scale impacts of climate change on biotic communities. As it is often impossible or at least impracticable to conduct large‐scale experiments on biotic responses to climate change, studies at a smaller scale may be a useful alternative. In our study, we therefore tested responses of grassland arthropods (carabid beetles, spiders, grasshoppers) to simulated climate change in terms of species activity densities and diversity. We conducted a controlled field experiment by changing water and microclimatic conditions at a small scale (16 m2). Roof constructions were used to increase drought‐like conditions, whereas water supply was enhanced by irrigation. In all, 2 038 carabid beetles (36 species), 4 893 spiders (65 species), and 303 Orthoptera (4 species) were caught using pitfall traps from May to August, 2010. During our experiment, we created an artificial small‐scale climate change; and statistics revealed that these changes had short‐term effects on the total number of individuals and Simpson diversity of the studied arthropod groups. Moreover, our results showed that certain species might react very quickly to climate change in terms of activity densities, which in turn might influence diversity due to shifts in abundance patterns. Finally, we devised methodological improvements that may further enhance the validity of future studies.  相似文献   

16.
Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site‐level characteristics, landscape factors, and land‐use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site‐level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red‐cockaded woodpecker in the southeastern United States. Land‐use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post‐agricultural sites; however, understory species composition was affected by historical connectivity, but only for post‐agricultural sites. The influences of management and restoration activities were only apparent once land‐use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post‐agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site‐level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land‐use history, and underscore the importance of considering land‐use history and landscape effects during restoration.  相似文献   

17.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

18.
Campylopus introflexus is an invasive moss in Europe and North America that is adapted to acidic and nutrient-poor sandy soils with sparse vegetation. In habitats like acidic coastal dunes (grey dunes) it can reach high densities, build dense carpets and modify habitat conditions. While the impact of the moss invasion on the vegetation is well analyzed, there is a lack of knowledge regarding possible effects on arthropods. In the present study we analyzed the impact of Campylopus introflexus on the ground-dwelling arthropods carabid beetles and spiders, as both taxa are known to be useful indicator taxa even on a small-scale level. In 2009 we compared species composition in a) invaded, moss-rich (C. introflexus) and b) native, lichen-rich (Cladonia spp.) acidic coastal dunes by using pitfall traps. A total of 1,846 carabid beetles (39 species) and 2,682 spiders (66 species) were caught. Species richness of both taxa and activity densities of spiders were lower in invaded sites. Species assemblages of carabids and spiders differed clearly between the two habitat types and single species were displaced by the moss encroachment. Phytophagous carabid beetles, web-building spiders and wolf spiders were more abundant in native, lichen-rich sites. Shifts in species composition can be explained by differences in the vegetation structure, microclimate conditions and most likely a reduced food supply in invaded sites. By forming dense carpets and covering large areas, the moss invasion strongly alters typical arthropod assemblages of endangered and protected (EU-directive) acidic coastal dunes.  相似文献   

19.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

20.
The fire resilience of ground‐dwelling ant assemblages in grassland subjected to annual fire management was investigated. Study sites consisted of three burnt sites and three unburnt sites in grasslands on the Hiraodai Karst Plateau in Fukuoka Prefecture, Japan. Ground‐dwelling ants were sampled by Winkler extraction and collected at 10 days and 1, 2, 3 and 6 months post‐fire. In total 33 ant species belonging to 25 genera in six subfamilies were collected from the burnt and unburnt sites. Eight of the 29 ant species collected at burnt sites were restricted to burnt sites, while four of the 25 ant species collected at unburnt sites were restricted to unburnt sites. Non‐metric multidimensional scaling and analysis of similarities revealed that the ant assemblages in the burnt sites at 10 days and 1 month post‐fire were clearly separated from the assemblages observed at 2, 3 and 6 months post‐fire. The results suggested that the ground‐dwelling ant fauna in the study area were highly resilient to fire at 2 months post‐fire and that the annual fire regime did not have a marked effect on species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号