首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest.  相似文献   

2.
Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior. We hypothesized that both the magnitude and variance of nonadditivity in flammability parameters are greater in moist than in dry fuel beds. We conducted a series of experimental burns in monocultures and 2‐species mixtures with two ericaceous dwarf shrubs and two bryophyte species from temperate fire‐prone heathlands. For a set of fire behavior parameters, we found that magnitude and variability of nonadditive effects are, on average, respectively 5.8 and 1.8 times larger in moist (30% MC) species mixtures compared to dry (10% MC) mixed fuel beds. In general, the moist mixtures caused negative nonadditive effects, but due to the larger variability these mixtures occasionally caused large positive nonadditive effects, while this did not occur in dry mixtures. Thus, at moister conditions, mixtures occasionally pass the moisture threshold for ignition and fire spread, which the monospecific fuel beds are unable to pass. We also show that the magnitude of nonadditivity is highly species dependent. Thus, contrary to common belief, the strong nonadditive effects in mixtures can cause higher fire occurrence at moister conditions. This new integration of surface fuel moisture and species interactions will help us to better understand fire behavior in the complexity of natural ecosystems.  相似文献   

3.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.  相似文献   

4.
Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide‐ranging species and 34 random two‐species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non‐Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non‐flammable species were found in mixtures involving the non‐Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.  相似文献   

5.
Although broadleaf tree species of the boreal biome have a lower flammability compared to conifers, there is a period following snow melt and prior to leaf flush (i.e., greenup), termed the “spring window” by fire managers, when these forests are relatively conducive to wildfire ignition and spread. The goal of this study was to characterize the duration, timing, and fire proneness of the spring window across boreal Canada and assess the link between these phenological variables and the incidence of springtime wildfires. We used remotely sensed snow cover and greenup data to identify the annual spring window for five boreal ecozones from 2001 to 2021 and then compared seasonality of wildfire starts (by cause) and fire-conducive weather in relation to this window, averaged over the 21-year period. We conducted a path analysis to concomitantly evaluate the influence of the spring window's duration, the timing of greenup, and fire-conducive weather on the annual number and the seasonality of spring wildfires. Results show that the characteristics of spring windows vary substantially from year to year and among geographic zones, with the interior west of Canada having the longest and most fire-conducive spread window and, accordingly, the greatest springtime wildfire activity. We also provide support for the belief that springtime weather generally promotes wind-driven, rather than drought-driven wildfires. The path analyses show idiosyncratic behavior among ecozones, but, in general, the seasonality of the wildfire season is mainly driven by the timing of the greenup, whereas the number of spring wildfires mostly responds to the duration of the spring window and the frequency of fire-conducive weather. The results of this study allows us to better understand and anticipate the biome-wide changes projected for the northern forests of North America.  相似文献   

6.
Question: To what extent do low flammability fuel traits enhance the survival and persistence of fire‐sensitive (slowing‐growing, non‐serotinous, non‐resprouting) dominant trees in highly flammable landscapes, under varying fire‐weather conditions? Location: Mixed forests co‐dominated by flammable Eucalyptus species and fire‐sensitive Callitris glaucophylla in Pilliga State Forest, southeast Australia. Methods: The influence of vegetation composition (relative abundance of Callitris and flammable Eucalyptus) on fire intensity and survival of fire‐sensitive Callitris was assessed across gradients of Callitris abundance in mixed EucalyptusCallitris forests that burned under low‐moderate and extreme fire‐weather conditions. Results: In areas that burned under low‐moderate fire‐weather conditions, as Callitris abundance increased, fire intensity declined and Callitris survival increased (46%). By comparison, in extreme fire‐weather conditions, lower fire intensity at higher levels of Callitris abundance, was not sufficient to increase Callitris survival (4%). Callitris survival was also positively related to trunk diameter. Ground fuel type, but not biomass, varied with vegetation composition. Conclusions: These results demonstrate that flammable feedbacks, mediated by low flammability fuel traits of dominant trees, can provide an important mechanism for enhancing the survival and persistence of slow‐growing, non‐serotinous, non‐resprouting, fire‐killed trees in highly flammable landscapes. By modifying vegetation and fuel structure, patches of fire‐sensitive Callitris reduce fire intensity, and thereby reduce Callitris mortality, enhancing population persistence. However, this feedback loop is insufficient to ensure Callitris survival under extreme fire‐weather conditions, when fire intensity is greater. After burning, stands remain vulnerable to future fires, until trees grow large enough to modify fuel levels and reduce stand flammability.  相似文献   

7.
《Aquatic Botany》2005,82(1):12-26
Data from a hierarchical study of four Zostera marina beds in Wales were used to identify the spatial scales of variation in epiphyte assemblages. There were significant within and among bed differences in assemblage structure. The differences in assemblage structure with spatial scale generally persisted when species identifications were aggregated into functional groups. There was also significant within and among bed variability in Zostera density and average length. Local variations in Zostera canopy variables at the quadrat scale (total leaf length, average leaf length and leaf density per quadrat) were not related to epiphyte species richness nor to the structure of the assemblage. In contrast, individual leaf length was significantly related to species richness in two of the beds and the structure of epiphyte assemblages was always related to individual leaf lengths. The absence of links between quadrat scale measurements of canopy variables and assemblage structure may reflect the high turnover of individual Zostera leaves. Experimental work is required to discriminate further between the potential causes of epiphyte assemblage variation within and between beds. No bed represented a refuge where a rare species was abundant. If a species was uncommon at the bed scale, it was also uncommon in beds where it occurred. The heterogeneous assemblages found in this study suggest that a precautionary approach to conservation is advisable. As much of a bed as possible should be retained, both to protect the integrity of local assemblages and to retain rare species at regional scales.  相似文献   

8.
The different weight-number strategies of seed production displayed by individuals of a Mediterranean fire-prone plant species (Cistus ladanifer) were investigated in relation to seed germination responses to pre-germination heating. A control (no heating), a high temperature during a short exposure time (100 degrees C during 5 min) and a high temperature during a long exposure time (100 degrees C during 15 min) were applied to seeds from different individual plants with different mean seed weight. These pre-germination treatments resemble natural germination scenarios for the studied species, absence of fire, typical Mediterranean shrub fire, and severe fire with high fuel load. Seed germination was related to heat treatments and seed mass. Seed heating increased the proportion of seeds germinating compared with the control treatment. Mean seed weight was positively correlated to the proportion of germinated seeds but only within heat treatments. These results suggest that in periods without fire, the relative contributions to the population dynamics are equal for all seeds, regardless of their mass, whereas heavier seeds would be the main contribution after wildfire events. Since lighter seeds can be produced in higher quantities than heavier ones within a given fruit, the number of seedlings produced per fruit depended strongly on the germination conditions. In the absence of wildfire, fruits producing lighter seeds gave rise to more seedlings; nevertheless, they were numerically exceeded by those producing heavy seeds after a wildfire. The implications of these results are discussed in relation to their consequences on the population dynamics of this species, considering also additional information on stand flammability and changes in seed mass with plant age.  相似文献   

9.
Factors governing landscape‐scale flammability are poorly understood, yet critical to managing fire regimes. Studies of the extent and severity of the 2003 Australian alpine fires revealed marked differences in flammability between major alpine plant communities, with the occurrence and severity of fire greater in heathland compared to grassland. To understand this spatial variation in landscape flammability, we documented variation in two physical properties of fuel – load and bulk density – at the life‐form and plant community scale. We measured the load (mass per unit area) and bulk density (mass per unit volume) of fine fuels (<6 mm) at 56 sites across the Bogong High Plains, southeastern Australia. Fine fuel load was positively correlated with shrub cover, and fine fuel bulk density was negatively correlated with shrub cover. Furthermore, fine fuel load and bulk density were accurately predicted using simple measures of canopy height and shrub cover. We also conducted a burning experiment on individual shrubs and snowgrass (Poa spp.) patches to assess comparative differences in flammability between these life‐forms. The burning experiment revealed that shrubs were more flammable than snowgrass as measured by a range of flammability variables. Consequently, our results indicate that treeless alpine landscapes of southeastern Australia are differentially flammable because of inherent life‐form differences in both fine fuel load and bulk density. If shrub cover increases in these alpine landscapes, as projected under climate change, then they are likely to become more flammable and may experience more frequent and/or severe fires.  相似文献   

10.
The functional response of plant communities to disturbance is hypothesised to be controlled by changes in environmental conditions and evolutionary history of species within the community. However, separating these influences using direct manipulations of repeated disturbances within ecosystems is rare. We evaluated how 41 years of manipulated fire affected plant leaf economics by sampling 89 plant species across a savanna-forest ecotone. Greater fire frequencies created a high-light and low-nitrogen environment, with more diverse communities that contained denser leaves and lower foliar nitrogen content. Strong trait–fire coupling resulted from the combination of significant intraspecific trait–fire correlations being in the same direction as interspecific trait differences arising through the turnover in functional composition along the fire-frequency gradient. Turnover among specific clades helped explain trait–fire trends, but traits were relatively labile. Overall, repeated burning led to reinforcing selective pressures that produced diverse plant communities dominated by conservative resource-use strategies and slow soil nitrogen cycling.  相似文献   

11.
Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non‐resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability‐enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire‐prone ecosystems.  相似文献   

12.
Changes in coastal heath vegetation were measured for 6 years following a wildfire and the data compared with the pre-fire vegetation. For the first 2 years changes were related to time; after that environmental factors dominated the process of regeneration. During the first 4 years plant species spread rapidly and maximum species diversity per plot was reached 4 years after the fire. About the same time many species consolidated their position in the community; this being shown by cover levels greater than before the fire for some species. Six years after the fire the vegetation is still dynamic and very different when compared with the heath before burning.  相似文献   

13.
We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.  相似文献   

14.
At fine spatial scales, savanna‐rainforest‐grassland boundary dynamics are thought to be mediated by the interplay between fire, vegetation and soil feedbacks. These processes were investigated by quantifying tree species composition, the light environment, quantities and flammability of fuels, bark thickness, and soil conditions across stable and dynamic rainforest boundaries that adjoin grassland and eucalypt savanna in the highlands of the Bunya Mountains, southeast Queensland, Australia. The size class distribution of savanna and rainforest stems was indicative of the encroachment of rainforest species into savanna and grassland. Increasing dominance of rainforest trees corresponds to an increase in woody canopy cover, the dominance of litter fuels (woody debris and leaf), and decline in grass occurrence. There is marked difference in litter and grass fuel flammability and this result is largely an influence of strongly dissimilar fuel bulk densities. Relative bark thickness, a measure of stem fire resistance, was found to be generally greater in savanna species when compared to that of rainforest species, with notable exceptions being the conifers Araucaria bidwillii and Araucaria cunninghamii. A transect study of soil nutrients across one dynamic rainforest – grassland boundary indicated the mass of carbon and nitrogen, but not phosphorus, increased across the successional gradient. Soil carbon turnover time is shortest in stable rainforest, intermediate in dynamic rainforest and longest in grassland highlighting nutrient cycling differentiation. We conclude that the general absence of fire in the Bunya Mountains, due to a divergence from traditional Aboriginal burning practices, has allowed for the encroachment of fire‐sensitive rainforest species into the flammable biomes of this landscape. Rainforest invasion is likely to have reduced fire risk via changes to fuel composition and microclimatic conditions, and this feedback will be reinforced by altered nutrient cycling. The mechanics of the feedbacks here identified are discussed in terms of landscape change theory.  相似文献   

15.
王博  韩树文  顾泽  陈锋  白夜  刘晓东 《生态学报》2023,43(5):1812-1821
油松是我国华北地区代表性树种之一,含有丰富油脂,容易引发大面积高烈度森林火灾。阐明不同烈度林火对油松林地表可燃物负荷量和潜在地表火行为的影响,对于油松林林火管理具有重要意义。以辽河源自然保护区2014年不同烈度林火干扰后油松林分为研究对象,根据不同烈度(重度、中度、轻度)和对照(未过火)分别设置3块20 m×20 m样地,共12块样地,调查地表可燃物和林分结构指标,结合室内实验,利用BehavePlus 5.0软件进行潜在火行为模拟,探讨不同烈度林火5年后油松林地表可燃物负荷量和潜在地表火行为特点,并分析影响潜在地表火行为的主要因素。研究结果表明:(1)不同烈度林火之间,细小可燃物负荷量和地表可燃物总负荷量均不存在显著性差异(P>0.05)。(2)不同烈度林火后,在不同风速和可燃物含水率条件下,油松林潜在地表火蔓延速度、火线强度不存在显著性差异(P>0.05),单位面积发热量、火焰高度、反应强度存在显著性差异(P<0.05)。(3)不同烈度林火后油松林潜在地表火行为主要受油松更新幼苗基径、灌木负荷量、油松平均冠幅、上层枯叶负荷量、油松更新幼苗密度的影响。研究结果表明不...  相似文献   

16.
Fire is a globally important ecosystem process, and invasive grass species generally increase fire spread by increasing the fuel load and continuity of native grassland fuelbeds. We suggest that invasive grasses that are photosynthetically active, while the native plant community is dormant reduce fire spread by introducing high-moisture, live vegetation gaps in the fuelbed. We describe the invasion pattern of a high-moisture, cool-season grass, tall fescue (Schedonorus phoenix (Scop.) Holub), in tallgrass prairie, and use spatially explicit fire behavior models to simulate fire spread under several combinations of fuel load, invasion, and fire weather scenarios. Reduced fuel load and increased extent of tall fescue invasion reduced fire spread, but high wind speed and low relative humidity can partially mitigate these effects. We attribute reduced fire spread to asynchrony in the growing seasons of the exotic, cool-season grass, tall fescue, and the native, warm-season tallgrass prairie community in this model system. Reduced fire spread under low fuel load scenarios indicate that fuel load is an important factor in fire spread, especially in invaded fuel beds. These results present a novel connection between fire behavior and asynchronous phenology between invasive grasses and native plant communities in pyrogenic ecosystems.  相似文献   

17.
The effect of wildfire on ecosystem function is gaining interest since climate change is expected to increase fire frequency and intensity in many forest systems. Fire alters the nutritional status of forest ecosystems, affecting ecosystem function and productivity, but further studies evaluating changes in leaf nutrient traits induced by forest wildfires are still needed. We used a 17-year-old Pinus canariensis wildfire chronosequence to elucidate the nature of nutrient limitations in natural and unmanaged pine forest in the Canary Islands. Pine needles were sampled in winter and spring and analysed for N and P concentrations. As expected, we found the lowest leaf N and leaf P in recently burned plots. However, the leaf N:P ratio was higher in burned versus unburned plots, suggesting that the decrease in P availability due to the fire is larger than that of N. For all leaf traits and sampling dates, leaf trait values in burned plots matched those observed in unburned plots 17 years after a fire. The N:P ratio found in P. canariensis needles was one of the lowest values reported in the literature for woody species, and suggests that all pine trees in the chronosequence are unambiguously limited by low N availability. Our results show that these N-limited pine forests retained N more efficiently than P 4 years after a wildfire; however, leaf N recovery is slower than P recovery, suggesting that the mechanisms responsible for pine N limitation operate continuously in these forests.  相似文献   

18.
The Mojave Desert of North America has become fire‐prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post‐fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life‐history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life‐history traits and evaluated whether these groups exhibited a consistent fire‐response. Six life‐history traits varied significantly between burned and unburned areas in short (up to 4 years) or long‐term (up to 52 years) post‐fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life‐history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind‐dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non‐wind dispersed seeds, and taller heights. Our results show that PFTs based on life‐history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long‐lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life‐history strategies.  相似文献   

19.
植物叶片性状随叶龄的变化是植物生活史策略的体现, 反映了植物叶片的物质投资和分配方式。该研究通过在个体和物种2个水平, 比较浙江天童1 hm 2样地内常绿阔叶树种的平均叶面积(MLA)、比叶面积(SLA)和叶片干物质含量(LDMC)在当年生和往年生叶片间的差异和关联, 探究叶片物质分配策略在异龄叶间的变化, 并分析叶龄对植物叶片性状, 特别是叶片面积建成消耗的影响。结果显示: 1)在个体和物种水平上, MLA变异系数最大(个体: 79.5%; 物种: 66.5%), SLA次之(个体: 28.1%; 物种: 24.7%), LDMC较低(个体: 17.0%, 物种: 14.1%); 当年生叶片MLA、LDMCSLA的变异系数均高于往年生叶片; 2)往年生叶MLA显著大于当年生叶(t = -38.53, p < 0.001), 往年生叶SLA显著小于当年生叶(t = 45.30, p < 0.001), 往年生叶LDMC显著大于当年生叶(t = -9.71, p < 0.001); 3)在个体水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的86%、48%和41%; 在物种水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的97%、83%和85%; 4) SLA在异龄叶间的变化表明, 与往年生叶片相比, 投资相同干物质, 当年生叶片可形成较大的叶面积, 其叶片面积建成消耗较小。研究认为, 植物叶性状在异龄叶间具有较大的变异性和关联性, 叶面积形成过程中生物量建成与消耗的协调可能影响植物叶片的发育。  相似文献   

20.
Summary Laurel Sumac (Rhus laurina) is a dominant member of the coastal chaparral community of southern California that survives periodic burning by wildfires by resprouting from a lignotuber (root crown). We investigated the physiological basis for resprouting by comparing shoot elongation, leaf nitrogen content, tissue water status, leaf conductance to water vapor diffusion, and photosynthetic rates of post-fire R. laurina to those of adjacent unburned shrubs. Resprouts had higher rates of shoot elongation, leaf conductance, and photosynthesis than mature, unburned shrubs. Leaf nitrogen contents were elevated in burned shrubs even though their leaves developed interveinal chlorosis. A comparison of soil water potential to predawn water potential indicated that roots of R. laurina remain active below 2 m during the first summer drought after wildfire. Our results support the hypothesis that lignotubers not only contain dormant buds that develop into aerial shoots after wildfire but they also supply nutrient resources that enhance shoot elongation. Because R. laurina is relatively sensitive to drought, yet very successful in its rapid recovery after fire, maintaining an active root system after shoot removal may be the primary function of the massive lignotuber formed by this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号