首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Does predation maintain tit community diversity?   总被引:2,自引:0,他引:2  
European tits of the genus Parus constitute a complex group of coexisting boreal birds. Here we present a survey of the distribution of three coniferous-living Parus species and one of their main predators, the pygmy owl ( Glaucidium passerinum ), on nine isolated islands in Scandinavia. On all islands the coal tit ( Parus ater ) is the sole tit species when the pygmy owl is absent. The two larger species, the willow tit ( P. montanus ) and the crested tit ( P. cristatus ), only coexist with the coal tit when pygmy owls are present. We suggest that the coexistence of willow tits, crested tits and coal tits is the result of a combination of competition for food and predator-safe foraging sites. The smaller coal tit is superior in exploitation competition for food, while the two larger species have an advantage in interference competition for predator-safe foraging sites. The association between the distribution of the pygmy owl and the two larger tit species on isolated islands in Scandinavia is consistent with the idea that the pygmy owl is a keystone predator.  相似文献   

2.
Climate change within the UK will affect winter starvation risk because higher temperatures reduce energy budgets and are likely to increase the quality of the foraging environment. Mass regulation in birds is a consequence of the starvation–predation risk trade-off: decreasing starvation risk because of climate change should decrease mass, but this will be countered by the effects of predation risk, because high predation risk has a negative effect on mass when foraging conditions are poor and a positive effect on mass when foraging conditions are good. We tested whether mass regulation in great tits (Parus major) across the UK was related to temporal changes in starvation risk (winter temperature 1995–2005) and spatial changes in predation risk (sparrowhawk Accipiter nisus abundance). As predicted, great tits carried less mass during later, warmer, winters, demonstrating that starvation risk overall has decreased. Also, the effects of predation risk interacted with the effects of temperature (as an index of foraging conditions), so that in colder winters higher sparrowhawk abundance led to lower mass, whereas in warmer, later, winters higher sparrowhawk abundance led to higher mass. Mass regulation in a small bird species may therefore provide an index of how environmental change is affecting the foraging environment.  相似文献   

3.
The fat reserves of small birds are built up daily as insurance against starvation. They are believed to reflect a trade-off between the risks of starvation and predation such that in situations of high predation risk birds are expected either to reduce their fat reserves in response to mass-dependent predation risk or to increase them in response to foraging interruptions. We assessed the effect on fat reserves of experimentally altering the perceived (but not the actual) risk of predation of wild great tits at a winter feeding site. The perceived predation risk was alternated between 'safe' and 'risky'. Increasing the perceived risk of predation involved 'swooping' a model sparrowhawk over the feeder at four unpredictable times each day using a remote mechanism We produce evidence that the experiment was suceessfull in altering the perceived risk of predation. As predicted from the hypothesis of mass-dependent predation risk, great tits (Parus major) carried significantly reduced fat reserves during the 'risky' treatment. Furthermore, dominant individuals were able to reduce their reserves more than subordinates. As birds returned to feeders within seconds after a predator 'attack', the reduction in fat reserves cannot be attributed to an interruption in feeding.  相似文献   

4.
Mothers may affect the future success of their offspring by varying allocation to eggs and embryos. Allocation may be adaptive based on the environmental conditions perceived during early breeding. We investigated the effects of food supplementation and predation risk on yolk hormone transfer in the pied flycatcher Ficedula hypoleuca. In a food supplementation experiment, females were food‐supplemented prior to and during egg‐laying and androgen concentrations were measured throughout the laying order. Predation risk was investigated in three different studies combining both correlative data, where flycatchers bred in close proximity to two different predator species that prey upon adult flycatchers (either Tengmalm's owl Aegolius funereus or pygmy owl Glaucidium passerinum), and an experimental manipulation, where flycatchers were exposed to cues of a nest predator (least weasel Mustela nivalis). Females receiving food supplementation laid eggs with lower concentrations of androstenedione (A4) than females not receiving food supplements. Yolk testosterone (T) concentration showed the same pattern but the difference was not statically significant. Testosterone (but not A4) concentration increased within clutches, from the first to the last egg, independently of the food supplementation. Females breeding under high predation risk did not differ from control females in their yolk androgen levels (A4, T or progesterone). However, concentrations of A4 tended to be lower in the proximity of pygmy owls, which could indirectly increase offspring survival after fledging. Food supplementation during egg‐laying seems to have a stronger impact on maternal transfer of androgens than predation risk. Food availability and predation risk could differentially affect the trade‐offs of androgen allocation for the offspring when raised in good vs. dangerous environments.  相似文献   

5.
We analysed the effects of forest fragmentation on the flock structure of insectivorous forest passerines (Parus, Aegithalos, Certhia, Regulus, etc.), and on the anti‐predator behaviour and energy management of blue tits in these flocks. We surveyed flocks in Central Spain during two winters. Flocks in fragments comprised fewer individuals and species than flocks in unfragmented forests. The most abundant species in forest flocks (blue tit, Parus caeruleus, and firecrest, Regulus ignicapillus) were also the most abundant in fragments, while the rarest species in the area never occurred in small woodlots. We investigated how fragmentation and related changes in flock structure affect anti‐predator behaviour of blue tits, a widely distributed species in the area. In fragments but not in forests, blue tits increased scanning rates with decreasing flock size. Vigilance was relaxed when great tits, Parus major, were abundant as flock mates, suggesting that the absence of this dominant species in fragments could intensify anti‐predator behaviour of blue tits. Blue tits enhanced anti‐predator behaviour in the second winter parallel to an increase in the abundance of raptors. This behavioural change was stronger in fragments, where blue tits foraged deeper in the canopy and increased scanning and hopping rates. Under increased predation risk, birds are expected to reduce body mass to improve predator avoidance. On average, blue tits weighed similar in fragments and forests the second winter. However, they accumulated fat along the day in fragments only, and adjusted body mass to body size more closely in that habitat type. This suggests that blue tits perceived fragments as unpredictable habitats where fattening would help avoid starvation, but also as dangerous sites where overweight would further increase the risk of predation. In summary, our results support that fragmentation affects individual behaviour of blue tits, and show the potential of behavioural approaches to unravel how different species face the advancing fragmentation of their habitats.  相似文献   

6.
During the winter, small birds face the threat of starvationduring the day and overnight. The threat of starvation can bereduced by maintaining higher energetic reserves, either asinternal fat stores or as external hoards. I present here empiricaldata concerning the management of energetic reserves in responseto unpredictability in foraging success. Predictions of a modelwere tested using marsh tits (Parus palustris) experiencingconditions of low and high temporal variation in food supply.Under the high-variation treatment, birds increased externalhoards but not internal fat reserves. In addition, birds decreasedtheir mean hoard-recovery interval compared to conditions inwhich food was predictable. Detailed examination of body weightthroughout the day indicates that marsh tits delayed the accumulationof overnight fat reserves until relatively late in the day.Overall, these results support the theory that fat reservesare costly to acquire and maintain and suggest that marsh titsactively manage both internal and external energetic reserveswithin and among days.  相似文献   

7.
Like British great tits, Belgian blue tits have a lower winter body mass when sparrowhawks are present. Since body mass affects manoeuvrability in small birds, tits may balance the risks of starvation and the risk of hawk predation by varying the amount of extra fat carried during winter. Predation pressure by sparrowhawks on young and inexperienced fledglings is at least as intense as that on the adults during winter. We therefore expected that tit fledgling body mass could also be reduced in the presence of sparrowhawks. In the years after one pair of sparrowhawks settled in a study plot, the mean body mass of blue tit fledglings was lower compared with that in years when there were no sparrowhawks. Furthermore, the shape of the curve relating juvenile survival to fledging mass changed, because the survival of the heaviest fledglings was reduced, which altered the selection differential of juvenile survival as a function of body mass from directional to stabilizing. Of seven published studies on the fledgling body mass–survival relation in tits, all three of the studies conducted in the absence of sparrowhawks showed the highest survival rates for the heaviest young, whereas in all four studies with sparrowhawks present this was no longer the case.  相似文献   

8.
Ecological pressure paired with opportunism can lead to surprising innovations in animal behaviour. Here, we report predation of great tits (Parus major) on hibernating pipistrelle bats (Pipistrellus pipistrellus) at a Hungarian cave. Over two winters, we directly observed 18 predation events. The tits specifically and systematically searched for and killed bats for food. A substantial decrease in predation on bats after experimental provisioning of food to the tits further supports the hypothesis that bat-killing serves a foraging purpose in times of food scarcity. We finally conducted a playback experiment to test whether tits would eavesdrop on calls of awakening bats to find them in rock crevices. The tits could clearly hear the calls and were attracted to the loudspeaker. Records for tit predation on bats at this cave now span more than ten years and thus raise the question of whether cultural transmission plays a role for the spread of this foraging innovation.  相似文献   

9.
Changing climate can modify predator–prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food‐hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze–thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze–thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze–thaw events might impair their foraging and ultimately decrease local overwinter survival. Long‐term trends and future predictions, therefore, suggest that impacts of climate change on wintering food‐hoarding species could be substantial, because their ‘freezers’ may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food‐hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions.  相似文献   

10.
The density of great tit Parus major L. and blue tit Parus caeruleus L. was artificially increased by placing nest-box colonies for these species in the vicinity of the nests of breeding tawny owls during 1993–1997. Bird prey composition in the owl nests, the proportion of parents disappearing from the breeding tit populations and the reproductive performance of the widowed parents were analysed. The frequency of predation on tits by tawny owls was greater in areas where tit density had been artificially increased. Owls preyed more on tits during the feeding period of owlets than during the incubation period and more in years when snow covered the ground during the incubation period than when it did not. Mortality due to predation was male biased and more females lost their mates in populations breeding near tawny owl nests. Reproductive performance of the widowed parents was lower and their body weights were lighter at the end of the nestling period than those found in birds rearing youngs with their mates. Predation by owls increased the between-year turnover in the breeding tit population: widowed parents did not return to the nesting site for the next breeding season.  相似文献   

11.
The optimum body mass of passerine birds typically represents a trade‐off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK‐wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long‐term, UK‐wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large‐scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes.  相似文献   

12.
As foraging becomes more unpredictable animals should increase their body reserves to reduce the risk of starvation. However, any increases in reserves may increase the risk of predation because extra mass probably compromises escape ability. Because of differences in foraging ability not all individuals will be affected in the same way by changes in foraging conditions. Relatively poor foragers will have more unpredictable foraging success for any given availability of food and therefore should carry larger body reserves. The mass-dependent predation hypothesis then predicts a negative correlation between levels of body reserves and foraging ability, although this may be modified by state-dependent compensation. I measured foraging rates and body masses of wintering European blackbirds, Turdus merula. Individuals with the lowest foraging rates had the largest gain in mass for the winter and had relatively high mass overall, independently of age and sex. That foraging rate determined mass rather than the reverse was demonstrated because foraging rate was independent of daily and seasonal mass change. Foraging rate within the experimental system was also independent of predation risk (as measured by distance from protective cover) and so the relation between mass and foraging rate was unlikely to have been confounded by any changes in vigilance to compensate for increased mass-dependent predation risk. The results suggest that blackbirds with high relative foraging rates have lower body reserves during the winter. Therefore there is probably a direct link between overwinter condition and fitness at least in blackbirds. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

13.
We studied the effect of four components of predation risk, namely predation pressure, spatial variation in woody cover, visibility, and flock size, on the behaviour of four species of the Parus guild (crested tit, P. cristatus , willow tit, P. montanus , coal tit, P. ater , and goldcrest, Regulus regulus ) at the edge of patches of mature boreal forest. Birds used the exposed side of the edge (matrix) mainly during periods with low levels of predation pressure by pygmy owls ( Glaucidium passerinum ). Some species avoided edges under low light conditions. Birds in large groups were more prone to cross the edge, whereas group cohesion increased in risky situations, especially in the most vulnerable species (coal tit and goldcrest). The effects of these three components of predation risk were not general in that only some species responded to them, and in that intra-specific responses were not always consistent. In contrast, all behaviours examined in all four bird species (occurrence, matrix crossing, edge crossing, and group cohesion) appeared to be strongly affected by habitat-mediated predation risk. Mature boreal forests appeared to be qualitatively superior to any type of matrix in terms of protection against predators. Birds generally avoided open matrix, and seemed to move towards and across more developed stages in forest regeneration according to the ratio between food intake and predation risk attributable to a given matrix type. Open matrix (farmland and clearcuts) and very young plantations strongly restricted the rate of bird movement between old forest patches. Our results contrast with the widespread thought that birds have a great potential to use fragmented landscapes in a fine-grained manner. These limited movements across the landscape during winter might have important repercussions on the occupation of some forest patches by tits, their subsequent reproduction, and in turn their population dynamics.  相似文献   

14.
We studied the effect of daily body mass increase on the foraging preferences of two tit species, crested tit, Parus cristatus and blue tit, P. caeruleus, contrasting in morphology and behaviour. We found that both species show a diurnal increase in body mass during winter. Using an experiment with feeders we show that in the crested tit, the proportion of time spent foraging while hanging decreased as body mass increased. In contrast, in the blue tit, foraging behaviour did not change with mass gain. We propose that the species with a morphological design providing a high ecological plasticity in terms of foraging postures can counteract the negative effect of body mass on the ecological options (foraging niche) more than species with a morphological design providing a low ecological plasticity in terms of foraging postures. Our results suggest that blue tits had the advantage of being able to choose to feed on different patches in the habitat throughout the day, which makes resources more predictable for them. In contrast, crested tits might be more restricted in their foraging options as their body mass increases, and this might explain why they hoard food.  相似文献   

15.
In seasonal environments variation in food abundance in the non‐breeding season is thought to affect songbird population dynamics. In a unique tit‐sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed.  相似文献   

16.
Energy is typically a limiting factor for animals during boreal winters, when low temperatures increase the cost of thermoregulation at the same times as short day‐lengths and snow cover constrain foraging opportunities. Under these circumstances animals use a suite of behavioural and physiological adaptations to avoid overnight starvation. However, it is poorly understood how such strategies are affected by increased energy demands from other physiological systems. Thus, we used free‐ranging blue tits, Cyanistes caeruleus, to test if competing demands for energy (here induced by a non‐inflammatory, antibody‐mediated immune challenge) would affect nocturnal body temperature (a predictor of energy expenditure in small animals) and energy‐saving nest box roosting behaviour. We also assessed if the immune challenge incurred long‐term survival costs. We found no evidence that body temperature regulation differed between immune‐challenged and saline‐injected birds. Nor did the immune challenge reduce survival to the next breeding season. However, old (second winter or older) immune‐challenged birds continued roosting in nest boxes to a larger extent at the peak immune response, despite increased perceived predation risk induced by the preceding capture and immunization. In contrast, old control birds were less prone to roost in nest boxes after capture and saline injection. This difference was less pronounced in young (first winter) birds. We interpret the increased risk‐taking behaviour in immune‐challenged birds as a consequence of a higher need for exploiting the thermal benefits of nest box roosting to reduce energy loss. This suggests that resource deficiency might be a stronger predictor of overnight survival than the threat of nocturnal predation in this system. As such, our study provides insights into the classic tradeoff between starvation and predation risk, in suggesting that priority is given to minimizing the risk of starvation in situations where both starvation and predation risks increase during cold winter nights.  相似文献   

17.
It is expected that through flexibility in behaviour, flock living birds respond to the asymmetries in resource access derived from dominance relationships. We analysed the microhabitat use of willow tits in winter flocks and assessed possible factors which shape habitat segregation between adults and juveniles in different temperature regimes. When foraging in mild conditions (ambient temperature > 0°C), flocks split up into subgroups with adults foraging in inner parts of trees more often than juveniles. However, no differences were recorded in the vertical position occupied in trees. In harsh conditions (< ? 4°C), flocks re‐united and juveniles further moved to outer parts of trees, increasing horizontal segregation between age classes. In mild conditions, vigilance behaviour was not related to the position of birds in trees, but in harsh conditions, scanning frequency was higher in outer parts of trees only for adults. In mild weather, juvenile position in trees was associated with body size and mass. The foraging microhabitat segregation detected in harsh conditions fits the age‐related hoarding distribution previously described in the same population. This supports the hypothesis that hoarded food is important in determining future foraging habitat use. Adult preference and intraspecific competition for safer or richer inner parts of trees as foraging sites during harsh conditions seems to determine the habitat segregation between adults and juveniles. Furthermore, we suggest that in mild weather, when foraging in the absence of adults, juveniles balance the costs of using a potentially dangerous microhabitat with the benefits of building energetically cheap and large food reserves through hoarding. The expected patterns of microhabitat segregation may differ in parids, depending on whether predation risk or other factors such as food availability are the main factors controlling habitat quality.  相似文献   

18.
The occurrence of mixed‐species foraging flocks is a worldwide phenomenon in terrestrial bird communities. Previous studies suggest that individuals participating in flocks might derive benefits in terms of improved feeding efficiency and/or reduced risk of predation. However, very little is known about how individuals establish mixed‐species flocks. Here, I provide the first experimental evidence that long‐distance calling by the willow tit, Poecile montanus, facilitates the establishment of mixed‐species flocks at a foraging patch. Observations at experimental foraging patches showed that willow tits that find a food source produce long‐distance calls, particularly when they are isolated from conspecific flockmates. The probability of long‐distance calling was negatively correlated with the number of heterospecific foraging individuals near the food source. A playback experiment confirmed that calls attract both conspecific and heterospecific members of foraging flocks. This study demonstrates that willow tits use long‐distance calls to attract conspecific flockmates to foraging patches, and these calls can also facilitate the formation of mixed‐species flocks on patches.  相似文献   

19.
F. J. Pulido  M. Díaz 《Oecologia》1997,111(3):434-442
 In spite of recent theoretical interest, few field studies have addressed the links between individual behavioral decisions and population distribution. This work analyzes the foraging behavior of individuals and the spatial distribution of a population of blue tits (Parus caeruleus) just before the main breeding season, when blue tit foraging was not affected by central-place or flocking behaviors. The study was carried out in open holm oak Quercus ilex woodlands (dehesas) that are patchy for canopy-foraging birds because of the scattered arrangement of trees. Residence time on each tree was not correlated either with previous flight time or with prey abundance in trees. Flight distances between trees were larger than average distances estimated in random samples of holm oaks taken close to foraging birds. Trees were not selected by birds on the basis of their expected energy costs and rewards. Bird abundance was not related to food availability in trees or to tree size across dehesas. However, bird abundance was strongly correlated with tree density and with the availability of tree holes for nesting, to the extent that the proportion of tits matched the proportions of both tree abundance and hole abundance across study plots. Overall, neither the behavior of individuals nor the distribution of the population of blue tits corresponded with food resources, which appeared superabundant; instead, tits appeared to behave and be distributed according to the distribution of structural resources such as trees and tree holes for nesting. Received: 18 August 1996 / Accepted: 14 March 1997  相似文献   

20.
Thomas RJ 《Animal behaviour》2000,59(4):787-791
Stochastic dynamic programming (SDP) is a computational technique that has been used to model daily routines of foraging in small birds. A diurnal bird must build up its fat reserves towards dusk in order to avoid starvation during the night, when it cannot feed. However, as well as the benefits of avoiding starvation, storing fat imposes costs such as an increased predation risk and higher flight and metabolic costs. There is therefore an optimal level of fat reserves for a bird to reach at dusk in order to survive overnight without being left with excessive fat reserves at dawn. I tested a prediction common to all SDP models of daily foraging routines, that a bird will attempt to reach this level at dusk, regardless of its fat reserves the previous dawn. I provided supplementary food to manipulate the fat reserves at dawn of free-living European robins, Erithacus rubecula. Diurnal changes in body mass (a reliable estimate of fat reserves) were then monitored remotely. Robins provided with an ad libitum food supply reached almost exactly the same body mass at dusk, regardless of their body mass at dawn, supporting the prediction that birds attempt to reach a target level of reserves at dusk. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号