首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During winter, ungulates in boreal forests must cope with high energetic costs related to locomotion in deep snow and reduced forage abundance and quality. At high density, ungulates face additional constraints, because heavy browsing reduces availability of woody browse, the main source of forage during winter. Under these severe conditions, large herbivores might forage on alternative food sources likely independent of browsing pressure, such as litterfall or windblown trees. We investigated the influence of alternative food sources on winter habitat selection, by studying female white-tailed deer (Odocoileus virginianus) living in 2 landscapes with contrasted browse abundance, recently logged and regenerated landscapes, in a population at high density and on a large island free of predators. We fitted 21 female white-tailed deer with Global Positioning System (GPS) collars and delineated winter home ranges and core areas. We measured snow conditions in different habitat categories and sampled vegetation in the core areas and in the rest of the home ranges to determine how forage abundance, protective cover, and snow conditions influenced habitat selection within the home range. In both landscapes, deer were less likely to use open habitat categories as snow accumulated on the ground. At a finer scale, deer inhabiting the regenerated landscape intensively used areas where balsam fir cover was intermediate with greater balsam fir browse density than in the rest of the home range. In the recently logged landscape, deer were more likely to be found near edges between clear-cuts and balsam fir stands and in areas where windblown balsam fir trees were present; the latter being the most influential variable. Although balsam fir browse was sparse and mainly out of reach in this landscape, deer increased the use of areas where it was present. Our results offer novel insights into the resource selection processes of northern ungulates, as we showed that access to winter forage, such as woody browse and alternative food sources, depends on climatic conditions and stochastic events, such as abundant compacted snow or windthrows. To compensate for these scarce and unpredictable food supplies, deer selected habitat categories, but mostly areas within those habitat categories, where the likelihood of finding browse, litterfall, and windblown trees was greatest. © 2011 The Wildlife Society.  相似文献   

2.
M. D. Dearing 《Oecologia》1996,109(1):122-131
 I investigated the effects of tannin consumption, using plant tannins naturally occurring in the diet, on a herbivorous mammal, the North American pika, Ochotona princeps. The objectives were to determine if a high-tannin diet influenced protein and dry matter apparent digestibility, fiber digestibility and production of detoxification by-products. Additionally, I examined the possibility that pikas produce salivary tannin-binding proteins, a potential mechanism for avoiding detrimental effects of tannins. My results demonstrate that although pikas constitutively produce salivary tannin-binding proteins, animals consuming a high-tannin diet of Acomastylis rossii exhibited lower dry matter, protein and fiber digestion and excreted higher concentrations of detoxification by-products. Thus, A. rossii tannins are potential toxins as well as digestibility reducers. I propose a hypothesis coupling detoxification to reduced fiber digestion that is applicable to pikas as well as other mammalian herbivores consuming phenolic-rich diets. Received: 31 July 1995 / Accepted: 9 July 1996  相似文献   

3.
Abstract: We assessed winter forage selection by white-tailed deer (Odocoileus virginianus) on Anticosti Island, Quebec, Canada, using cafeteria-feeding trials. Winter habitat on Anticosti is degraded and free-ranging deer at high densities consume 70% balsam fir (Abies balsamea) and 20% white spruce (Picea glauca), even though spruce is much more available than fir. Deer ate 89.9% balsam fir and 10.1% white spruce when the availability of both trees was equal. Deer did not eat shredded twigs more than intact twigs. Fiber content and condensed tannins were greater in white spruce than in balsam fir. Deer preference for fir was not based on texture but, more likely, on plant constituents, so we concluded that deer will nearly eliminate fir before they use any significant amount of white spruce. Management actions, therefore, need to be undertaken to enhance balsam fir regeneration.  相似文献   

4.
Abstract 1 Efficacy of commercial formulations of Bacillus thuringiensis ssp. kurstaki (Btk) against spruce budworm Choristoneura fumiferana was investigated in mixed balsam fir‐white spruce stands. Btk treatments were scheduled to coincide with early flaring of balsam fir shoots, and later with flaring of white spruce shoots. Btk efficacy on the two host trees was compared and examined according to the foliar content of nutrients and allelochemicals and the insect developmental stage at the time of spray. 2 Larvae fed white spruce foliage were less vulnerable to Btk ingestion than larvae fed balsam fir foliage. Higher larval survival on white spruce, observed 10 days after spray, was related to higher foliage content in tannins and a lower N/tannins ratio, which might have induced inactivation of Btk toxins. 3 Larval mortality due to Btk did not depend on spruce budworm larval age. 4 Foliage protection of both host trees was similar in plots treated with Btk: larval mortality due to Btk treatment reduced insect grazing pressure on balsam fir trees; meanwhile, suitability of white spruce foliage seemed to decrease very rapidly, which induced high larval mortality among spruce budworm fed on white spruce trees. Nevertheless, following Btk sprays, 50% more foliage remained on white spruce than on balsam fir trees, because of the higher white spruce foliage production. 5 Both spray timings achieved similar protection of white spruce trees, but Btk treatments had to be applied as early as possible (i.e. during the flaring of balsam fir shoots to optimally protect balsam fir trees in mixed balsam fir‐white spruce stands).  相似文献   

5.
This study examines the direct chemical defensive role of maltol, a previously identified secondary metabolite found in balsam fir, Abies balsamea (L.) Mill. (Pinaceae), that was detected during herbivory of spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Although used extensively in many industries, in addition to being found in multiple plant species, its functional role in plants remains unknown. The objectives of this study were to quantify the amount of free maltol and its potential conjugated form, maltol glucoside, in various foliage age classes and to evaluate whether constitutive foliage levels of maltol have an impact on spruce budworm fitness in maltol supplementation assays. Gas chromatography–mass spectrometry (GC‐MS) analysis of balsam fir foliage showed that maltol is produced in all foliage age classes tested; however, concentrations were significantly higher in older foliage. Liquid chromatography–mass spectrometry–mass spectrometry (LC‐MS‐MS) analysis showed that maltol also exists in balsam fir in its glucosylated form, a unique discovery in conifers. Similar to maltol, maltol glucoside is also present in current and 1‐year‐old balsam fir foliage and in significantly higher concentration in older foliage. We investigated the impact of maltol‐treated diet on spruce budworm fitness. Maltol additions that reflected constitutive foliage concentrations caused a significant reduction in larval development rate and pupal mass, whereas higher concentrations were required to cause significant mortality. These results suggest that maltol may be an important component of a direct defense strategy in balsam fir against spruce budworm herbivory.  相似文献   

6.
Associational effects, that is, the influence of neighboring plants on herbivory suffered by a plant, are an outcome of forage selection. Although forage selection is a hierarchical process, few studies have investigated associational effects at multiple spatial scales. Because the nutritional quality of plants can be spatially structured, it might differently influence associational effects across multiple scales. Our objective was to determine the radius of influence of neighbor density and nutritional quality on balsam fir (Abies balsamea) herbivory by white‐tailed deer (Odocoileus virginianus) in winter. We quantified browsing rates on fir and the density and quality of neighboring trees in a series of 10‐year‐old cutovers on Anticosti Island (Canada). We used cross‐correlations to investigate relationships between browsing rates and the density and nutritional quality of neighboring trees at distances up to 1,000 m. Balsam fir and white spruce (Picea glauca) fiber content and dry matter in vitro true digestibility were correlated with fir browsing rate at the finest extra‐patch scale (across distance of up to 50 m) and between cutover areas (300–400 m). These correlations suggest associational effects, that is, low nutritional quality of neighbors reduces the likelihood of fir herbivory (associational defense). Our results may indicate associational effects mediated by intraspecific variation in plant quality and suggest that these effects could occur at scales from tens to hundreds of meters. Understanding associational effects could inform strategies for restoration or conservation; for example, planting of fir among existing natural regeneration could be concentrated in areas of low nutritional quality.  相似文献   

7.
Habitat selection results from trade-offs between availability and use of resources under constraints of predation, competition, or other threats, which can vary spatially and temporally. For northern herbivores, winter food availability and quality can limit population size and may drive habitat preference. North American porcupines (Erethizon dorsatum) are widespread generalist herbivores that range from Mexico to the northern reaches of Alaska. During the long Alaskan winter, porcupines deal with high energetic demands resulting from low ambient temperatures while subsisting on low quality forage. We tracked free-ranging porcupines over 3 winters in southcentral Alaska to determine habitat selection and home range size in relation to diet. Porcupines maintained larger than expected home ranges, and selected for conifer-hardwood forests at the home range level. Individual variation among porcupines was too large to determine a pattern of microhabitat selection among trees. Regardless, direct observations revealed that porcupines used only white spruce and paper birch trees for foraging. White spruce may provide some nutritional and thermoregulatory advantage over paper birch; however, porcupines did feed on paper birch cambium, suggesting some nutritional requirement is met by eating paper birch. Porcupines most likely feed on paper birch cambium when detoxification pathways used to process plant toxins in white spruce needles are saturated. Maintaining mixed conifer-hardwood forests in southcentral Alaska would provide suitable winter habitat for porcupines and may alleviate damage to single species stands of conifers or hardwoods that are preferred by commercial forestry operations. © 2012 The Wildlife Society.  相似文献   

8.
雪尿分析技术是北方冬季有蹄类种群营养状况评价的可靠性指数。本文通过对兴隆镇小东林场和三江自然保护区1999 及2000 年冬季狍50 个雪尿、尿液样本采集及分析, 用以评价在不同类型的栖息地中狍冬季的营养状况, 结果表明: 雪尿分析可以评价狍冬季的营养状况及其变化; 雪尿中较低的尿素氮与肌酸酐的比率表明两地区狍基本上处于营养不良早期阶段, 反映了食物资源可利用性低、食物营养质量低造成外源蛋白质和能量摄入不足, 而使狍大量消耗体脂肪, 并通过对尿液化学成分的重吸收利用而保持其在尿液中排出量最低, 使机体内源蛋白质分解代谢处于较低状态; 三江1999 年冬季狍营养状况相对较差, 而2000 年情况较好; 幼体及亚成体处于营养不良中期阶段。
  相似文献   

9.
The relationship between herbivores, plants and nutrient dynamics, has been investigated in many systems; however, how these relationships are influenced by changing climate has had much less attention. In the northeastern USA, both moose populations and winter climate have been changing. Moose, once extirpated from the region, have made a comeback; while locally, snow depth and duration of snow cover have declined. There is considerable uncertainty in how these changes will interact to influence forested systems. We used small experimental plots and transects along with snow removal (to elicit soil freezing and expose potential forage plants), mechanical browsing, and fecal additions (labeled with 15N) to examine ecosystem responses. We found that snow removal changed moose browsing behavior, with balsam fir more heavily browsed than sugar maple or Viburnum under low snow conditions. Soil freezing alone did not significantly alter N dynamics or selected plant responses, but there were significant interactions with moose activity. The combined effects of moose fecal additions, mechanical browsing, and soil freezing resulted in higher levels of NO3 ? leaching under fir and maple, whereas Viburnum had essentially no response to these multiple factors. Our results suggest that declines in snow depth can initiate a cascade of ecosystem responses, beginning with exposure of plants to increased browsing that then triggers a series of responses that can lead to higher N losses, precipitated by decreased N demand in plants compromised by soil freezing damage. Balsam fir may be particularly susceptible to this cascade of multiple stresses.  相似文献   

10.
During winters 1987-1988 (I) and 1988-1989 (II), we assessed the physiological status of moose (Alces alces) residing on the west and east ends of Isle Royale (Michigan, USA) by collecting and chemically analyzing urine deposited in snow (snow-urine) from January to early March. Samples were assayed for urea nitrogen (U), sodium (Na), potassium (K), calcium (Ca), phosphorus (P) and creatinine (C). Throughout both winters, elevated urinary U:C ratios in snow-urine samples collected from east-end moose compared to west-end moose indicated greater dietary energy deprivation and accelerated net catabolism of endogenous protein. Sodium: C ratios were low throughout the study and were similar between moose from both ends of the island, except during the middle of winter I. Greater K:C, P:C and Ca:C ratios in east-end moose compared to west-end moose throughout winter I, and increases in these ratios and U:C in east-end moose from middle to late winter during the second year provided additional evidence of a greater deterioration in condition in east-end moose. The superior nutrition provided to moose on the west end of the island was associated with more developed soils and diverse vegetation and a lower stem density of balsam fir compared to the east end.  相似文献   

11.
The effects on spruce budworm larvae, Choristoneura fumiferana (Clem.), produced by ingestion of Margosan-O, a commercially available neem seed extract formulation containing 0.3% azadirachtin, were investigated. Bioassays with the test material were conducted using various instars of spruce budworm larvae, with either artificial diet, cut branches of balsam fir, Abies balsamea (L.) Mill., or small growing balsam fir trees as substrates. The dose-response data on feeding reduction, developmental retardation, and mortality (LC50, LC95, and LD50) suggest that Margosan-O has promise as a control agent for spruce budworm in an integrated pest management program.  相似文献   

12.
Diapause‐mediated dormancy in overwintering insect eggs has rarely been studied with regard to the ecological factors controlling postdiapause development. In insects of temperate latitudes, water availability at the end of winter, in interaction with temperature, could control the resumption of development for insect stages in postdiapause quiescence. The balsam twig aphid, Mindarus abietinus Koch (Hemiptera: Aphididae), overwinters as eggs in southern Québec, Canada, on balsam fir, Abies balsamea (L.) Miller (Pinaceae), in Christmas tree plantations, where it is known as a pest. Previous work has shown that eggs of this aphid maintain low water content during winter, presumably to survive sub‐zero temperatures. Conversely, in late winter and early spring, they passively or actively absorb surrounding moisture, which is accompanied by notable changes in size, shape, and fresh mass. The primary objective here was to determine the embryonic stage at which winter diapause starts and is maintained in M. abietinus, a relatively primitive aphid. Secondly, we tested the hypothesis that free water availability to postdiapause eggs, in combination with temperatures above developmental threshold, is essential for embryonic development and hatching, by experimentally soaking field‐collected eggs in water at controlled frequencies. We observed that embryogenesis starts at the time of egg laying and stops after a few days, before the anatrepsis stage of blastokinesis is complete, when the germ band has not yet entirely immersed itself into the yolk. We also found that water surrounding overwintered eggs on fir shoots, in interaction with temperature regime, significantly increases M. abietinus egg hatching rates. Potential impacts of environmental factors such as precipitation are discussed in relation to M. abietinus egg hatching rates and potential for population growth in spring.  相似文献   

13.
The intensity, pattern, and timing of browsing disturbances influence the mobilization of chemical defenses (allelochemicals) and subsequent growth of conifers such as balsam fir, an important food source for various insect and mammalian herbivores. The objective of this study was to examine the induction and persistence of allelochemicals in foliage of balsam fir seedlings as affected by the pattern and timing of browsing disturbance. We conducted a simulated browsing study in a greenhouse environment using four browsing patterns and three persistence times. Total phenols were induced shortly after simulated browsing and persisted for at least 1 month, whereas condensed tannins exhibited a delayed induction but were more persistent, remaining above background levels 2 months after simulated browsing. The chemistry of non-browsed seedlings revealed that a seasonal pattern was evident for both total phenols and condensed tannins. As the experiment progressed through the growing season, background levels of total phenols decreased while those of condensed tannins increased with the two allelochemicals groups appearing to show a negative relationship. These trends suggest that total phenols, which are assumed to have a lower biosynthetic cost and are more quickly mobilized than condensed tannins, are a first line of herbivory defense followed by condensed tannins which take longer to mobilize but have a longer persistence time or that total phenols act as a primary defense against insect herbivores which disturb plants in the early growing season while condensed tannins are mobilized in the late season to defend against mammalian browsers of balsam fir in winter.  相似文献   

14.
The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores.  相似文献   

15.
Two hypotheses, nutrient constraints and detoxification limitation, have been proposed to explain the lack of specialists among mammalian herbivores. The nutrient constraint hypothesis proposes that dietary specialization in mammalian herbivores is rare because no one plant can provide all requisite nutrients. The detoxification limitation hypothesis suggests that the mammalian detoxification system is incapable of detoxifying high doses of similar secondary compounds present in a diet of a single plant species. We experimentally tested these hypotheses by comparing the performance of specialist and generalist woodrats (Neotoma) on a variety of dietary challenges. Neotoma stephensi is a narrow dietary specialist with a single species, one-seeded juniper, Juniperus monosperma, comprising 85–95% of its diet. Compared with other plants available in the habitat, juniper is low in nitrogen and high in fiber, phenolics, and monoterpenes. The generalist woodrat, N. albigula, also consumes one-seeded juniper, but to a lesser degree. The nutrient constraint hypothesis was examined by feeding both species of woodrats a low-nitrogen, high-fiber diet similar to that found in juniper. We found no differences in body mass change, or apparent digestibility of dry matter or nitrogen between the two species of woodrats after 35 days on this diet. Moreover, both species were in positive nitrogen balance. We tested the detoxification limitation hypothesis by comparing the performance of the generalist and specialist on diets with and without juniper leaves, the preferred foliage of the specialist, as well as on diets with and without α-pinene, the predominant monoterpene in juniper. We found that on the juniper diet, compared with the specialist, the generalist consumed less juniper and lost more mass. Urine pH, a general indicator of overall detoxification processes, declined in both groups on the juniper diet. The generalist consumed half the toxin load of the specialist yet its urine pH was slightly lower. Moreover, the generalist consumed significantly less of the treatment with high concentrations of α-pinene compared to the control treatment, while the specialist consumed the same amount of food regardless of α-pinene concentration. For both groups, urine pH declined as levels of α-pinene in the diet increased. The generalist produced a significantly more acidic urine than the specialist on the treatment with the highest α-pinene concentration. Our results suggest that in this system, specialists detoxify plant secondary compounds differently than generalists and plant secondary compounds may be more important than low nutrient levels in maintaining dietary diversity in generalist herbivores. Received: 5 May 1999 / Accepted: 14 November 1999  相似文献   

16.
Plant Secondary Compounds as Diuretics: An Overlooked Consequence   总被引:2,自引:0,他引:2  
Plant secondary compounds are deterrents and toxins to a varietyof herbivores. The effect of secondary compounds on water balanceof herbivores is virtually unexplored, yet many secondary compoundsare renowned for their diuretic effects in humans and laboratoryrats. We review data from the ethnopharmocological literatureon plants with diuretic effects. We also present our data fromexperiments on water intake of specialist (Neotoma stephensi)and generalist woodrats (N. albigula) consuming plant secondarycompounds from their natural diet. We measured effects of dietarysecondary compounds on voluntary water consumption, urine volumeand urine osmolarity. Ingestion of secondary compounds increasedwater intake and urine output and decreased urine osmolarityin both species. However, the generalist was more impacted bydietary secondary compounds than the specialist. Our resultscombined with that from the literature suggest that diuresismay be a prevalent consequence of ingestion of secondary compounds.Many herbivores live in arid habitats with limited access tofree-standing water, thus an increase in the desire for watermay have profound consequences on foraging behavior and fitness.  相似文献   

17.
Some herbivores deliberately consume a mixed diet, either to obtain a superior mix of nutrients or to avoid consuming too much of any one toxin. Few studies have examined diet mixing in parasitic plants, which typically have very broad host ranges. We offered the parasitic plant Cuscuta indecora (dodder), a range of mixtures of two hosts (Iva frutescens and Borrichia frutescens) in the greenhouse, and observed correlations between the host community and Cuscuta infection in the field. In the greenhouse, Cuscuta performed better on mixtures with a higher relative abundance of Iva. Cuscuta selectively foraged on whichever host was more abundant (diet switching), the exact opposite of the behavior that would be expected if diet mixing was advantageous. In the field, the intensity of Cuscuta infections was decreased by the presence of non-hosts (grasses), not strongly affected by the presence of intermediate hosts, and increased by the presence of Borrichia. We conclude that Cuscuta does not obtain nutritional benefits from a broad diet, but instead is constrained by its relative lack of mobility to attack hosts of intermediate value. In general, the lack of mobility of parasitic plants compared to herbivores probably selects for broad host ranges in parasitic plants.  相似文献   

18.
Summary Nutrient requirements of adult, nonreproductive, omnivorous antelope ground squirrels (Ammospermophilus leucurus) were compared with the nutritional value of their food resources. It was found that nutrient constraints would be important factors in ground squirrel feeding ecology primarily in winter. Potentially important constraints were the requirement for water and nitrogen, and a digestive requirement that average dry matter digestibility of the diet exceed ca. 50%. An unlikely constraint was the requirement for any specific mineral. A linear programming model was used to determine potential diets ground squirrels could consume which satisfied these nutritional requirements and also the ground squirrel's daily energy requirements. During spring ground squirrels could be strict herbivores, but during winter before winter rains ground squirrels had to eat some arthropods to satisfy water requirements.These ground squirrels are not energy maximizers because they spend only one third of their activity period feeding and do not accumulate excess energy as fat. Thus, optimum diets were predicted for winter and spring assuming the goal of feeding time minimization. The model correctly predicted that in wintertime ground squirrels would be primarily granivorous but would consume about 20% arthropods, and that they would switch to herbivory in springtime. Ground squirrels, however, selected a wider dietary range than predicted in both winter and spring. Possible reasons for this discrepancy include an inappropriate assumption that ground squirrels forage for food classes nonsimultaneously, and the possibility that ground squirrels employ sampling as part of their foraging behavior.  相似文献   

19.
This study evaluated factors that influence the regurgitation behaviour of sixth instar spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), reared on balsam fir, Abies balsamea (L.) Mill. (Pinaceae), under various experimental conditions in the laboratory. Upon physical disturbance, larvae discharged a median volume of regurgitant of 0.4 μl when fed and 1.6 μl when food‐deprived. Larvae deprived of food for 24 or 48 h disgorged more regurgitant than larvae feeding on balsam fir foliage, and the effect was consistent for laboratory‐reared and field‐collected larvae. The water content of the foliage fed upon by larvae had no immediate impact on the volume of regurgitant; following a 24‐h period of food deprivation, however, larvae that previously fed on fresh foliage discharged >2.5 times more regurgitant than larvae that previously fed on dry foliage. Self‐regulated regurgitation by larvae, measured using the number of regurgitant stains on filter paper, was >10 times higher when larvae had access to balsam fir foliage than when they were starved. The number of larvae confined inside the Petri dish (one or four individuals) had a relatively small effect on regurgitation. Larvae were deterred from feeding when balsam fir needles were entirely covered with regurgitant, but not when only a portion of the foliage was treated. These results suggest that the regurgitant does not serve as resource marking or spacing pheromone. The high level of regurgitation by larvae after contact with ants suggests that the regurgitant has evolved in part as a defence mechanism against natural enemies.  相似文献   

20.
The role of neuropeptides in caterpillar nutritional ecology   总被引:5,自引:0,他引:5  
Bede JC  McNeil JN  Tobe SS 《Peptides》2007,28(1):185-196
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号