首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   

2.
3.
4.
5.
Cold shock and ethanol and puromycin stress responses in sporulating Bacillus subtilis cells have been investigated. We show that a total of 13 proteins are strongly induced after a short cold shock treatment of sporulating cells. The cold shock pretreatment affected the heat resistance of the spores formed subsequently, with spores heat killed at 85 or 90 degrees C being more heat resistant than the control spores while they were more heat sensitive than controls that were heat treated at 95 or 100 degrees C. However, B. subtilis spores with mutations in the main cold shock proteins, CspB, -C, and -D, did not display decreased heat resistance compared to controls, indicating that these proteins are not directly responsible for the increased heat resistance of the spores. The disappearance of the stress proteins later in sporulation suggests that they cannot be involved in repairing heat damage during spore germination and outgrowth but must alter spore structure in a way which increases or decreases heat resistance. Since heat, ethanol, and puromycin stress produce similar proteins and similar changes in spore heat resistance while cold shock is different in both respects, these alterations appear to be very specific.  相似文献   

6.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

7.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

8.
9.
10.
11.
The exudate of germinated spores of B. cereus IFO 13597 in 0.15 M KCl-50 mM potassium phosphate (pH 7.0) contained a spore-lytic enzyme which has substrate specificity for fragmented spore cortex from wild-type organisms (cortical-fragment-lytic enzyme [CFLE]), in addition to a previously characterized germination-specific hydrolase which acts on intact spore cortex (spore cortex-lytic enzyme [SCLE]) (R. Moriyama, S. Kudoh, S. Miyata, S. Nonobe, A. Hattori, and S. Makino, J. Bacteriol. 178:5330-5332, 1996). CFLE was not capable of degrading isolated cortical fragments from spores of Bacillus subtilis ADD1, which lacks muramic acid delta-lactam. This suggests that CFLE cooperates with SCLE in cortex hydrolysis during germination. CFLE was purified in an active form and identified as a 48-kDa protein which functions as an N-acetylglucosaminidase. Immunochemical studies suggested that the mature enzyme is localized on a rather peripheral region of the dormant spore, probably the exterior of the cortex layer. A gene encoding the enzyme, sleL, was cloned in Escherichia coli, and the nucleotide sequence was determined. The gene encodes a protein of 430 amino acids with a deduced molecular weight of 48,136. The N-terminal region contains a repeated motif common to several peptidoglycan binding proteins. Inspection of the data banks showed no similarity of CFLE with N-acetylglucosaminidases found so far, suggesting that CFLE is a novel type of N-acetylglucosaminidase. The B. subtilis genome sequence contains genes, yaaH and ydhD, which encode putative proteins showing similarity to SleL.  相似文献   

12.
13.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

14.
Spores produced by a mutant of Bacillus subtilis were slow to develop their resistance properties during sporulation, and were slower to germinate than were wild-type spores. The coat protein composition of the mutant spores, as analysed by SDS-PAGE, was similar to that of the wild-type spores. However, one of the proteins (mol. wt 12000) which is normally present in the outer-most layers of mature wild-type spores and which is surface-exposed, was assembled abnormally into the coat of the mutant spores and not surface-exposed. The mutation responsible for this phenotype (spo-520) has been mapped between pheA and leuB on the B. subtilis chromosome, and was 47% cotransformable with leuB16. This mutation, and three others closely linked to it, define a new sporulation locus, spoVIB, which is involved in spore coat assembly. The phenotype of the mutant(s) supports the contention that spore germination and resistance properties may be determined by the assembly of the coat.  相似文献   

15.
The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  相似文献   

16.
Inactivation of the Bacillus subtilis sspF gene had no effect on sporulation, spore resistance, or germination in a wild-type strain or one lacking DNA protective alpha/beta-type small, acid-soluble proteins (SASP). Overexpression of SspF in wild-type spores or in spores lacking major alpha/beta-type SASP (alpha- beta- spores) had no effect on sporulation but slowed spore outgrowth and restored a small amount of UV and heat resistance to alpha- beta- spores. In vitro analyses showed that SspF is a DNA binding protein and is cleaved by the SASP-specific protease (GPR) at a site similar to that cleaved in alpha/beta-type SASP. SspF was also degraded during spore germination and outgrowth, and this degradation was initiated by GPR.  相似文献   

17.
The predicted amino acid sequence of Bacillus subtilis yfjS (renamed pdaA) exhibits high similarity to those of several polysaccharide deacetylases. Beta-galactosidase fusion experiments and results of Northern hybridization with sporulation sigma mutants indicated that the pdaA gene is transcribed by E(sigma)(G) RNA polymerase. pdaA-deficient spores were bright by phase-contrast microscopy, and the spores were induced to germination on the addition of L-alanine. Germination-associated spore darkening, a slow and partial decrease in absorbance, and slightly lower dipicolinic acid release compared with that by the wild-type strain were observed. In particular, the release of hexosamine-containing materials was lacking in the pdaA mutant. Muropeptide analysis indicated that the pdaA-deficient spores completely lacked muramic delta-lactam. A pdaA-gfp fusion protein constructed in strain 168 and pdaA-deficient strains indicated that the protein is localized in B. subtilis spores. The biosynthetic pathway of muramic delta-lactam is discussed.  相似文献   

18.
A mutation near cysB on the Bacillus subtilis chromosome marks a new sporulation locus, spoVIC. It causes spores to germinate more slowly than those of the wild-type under all conditions and, from indirect evidence, it does not appear to alter the affinity for the germinant L-alanine. The mutant spores have some deficiency of coat proteins (particularly the alkalisoluble coat protein, Mr = 12 000) and the spore coat layers are disorganized. The mutant strain grows normally and sporulates normally until stage II, after which its sporulation is delayed by about 2 h compared to that of the wild-type. This delay results in the prolonged synthesis of some coat proteins and the late synthesis of others. The abnormal coat may be the cause of the germination deficiency. A double mutant strain carrying the spoVIC610 mutation together with gerE36 sporulates slowly. Its spores have very little coat protein, are sensitive to heat, lysozyme and organic solvents, but germinate as well as the strain carrying the spoVIC mutation alone. The role of the spore coat in germination is discussed in the light of these findings.  相似文献   

19.
20.
Ascospores of a strain of Saccharomyces cerevisiae Hansen were less sensitive to desiccation and heat than vegetative cells. Desiccation resistance was acquired earlier during sporulation and lost later during spore germination than heat resistance. As spores matured, resistance to both stresses increased. With the exception of the first few hours in sporulation medium, when proline appeared to be utilized, the intracellular free proline content increased during sporulation and decreased during spore germination. Not all the proline lost could be detected in the germination medium, indicating that some was metabolically utilized by the germinating spores. Since exogenous proline supplied to vegetative or sporulating cells before desiccation increased their survival, it is suggested that the high level of free proline in mature spores may protect against desiccation stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号