首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Full-length cDNA clones encoding deoxyhypusine synthase (DHS) and eucaryotic initiation factor 5A (eIF-5A) have been isolated from a cDNA expression library prepared from tomato leaves (Lycopersicon esculentum, cv. Match) exposed to environmental stress. DHS mediates the first of two enzymatic reactions that activate eIF-5A by converting a conserved lysine to the unusual amino acid, deoxyhypusine. Recombinant protein obtained by expressing tomato DHS cDNA in Escherichia coli proved capable of carrying out the deoxyhypusine synthase reaction in vitro in the presence of eIF-5A. Of particular interest is the finding that DHS mRNA and eIF-5A mRNA show a parallel increase in abundance in senescing tomato flowers, senescing tomato fruit, and environmentally stressed tomato leaves exhibiting programmed cell death. Western blot analyses indicated that DHS protein also increases at the onset of senescence. It is apparent from previous studies with yeast and mammalian cells that hypusine-modified eIF-5A facilitates the translation of a subset of mRNAs mediating cell division. The present study provides evidence for senescence-induced DHS and eIF-5A in tomato tissues that may facilitate the translation of mRNA species required for programmed cell death.  相似文献   

3.
Deoxyhypusine synthase (DHS; EC 2.5.1.46) mediates the first of two enzymatic reactions that convert inactive eukaryotic translation initiation factor-5A (eIF-5A) to an activated form, thought to facilitate translation. A full-length cDNA clone encoding canola ( Brassica napus cv. Westar) DHS was isolated from a cDNA-expression library prepared from senescing leaves. Transgenic canola lines with suppressed DHS expression were obtained by introducing a transgene expressing antisense 3'-UTR canola DHS cDNA under the regulation of the constitutive cauliflower mosaic virus 35S (CaMV-35S) promoter. Transformed seed was obtained by vacuum infiltration of canola inflorescences using the protocol developed for Arabidopsis with modifications. The resultant transgenic plants had reduced levels of leaf DHS protein and exhibited delayed natural leaf senescence. Suppression of DHS also increased leaf size by 1.5- to two-fold and resulted in increases in seed yield of up to 65%. Moreover, the enhanced performance of transgenic plants reflected increased tolerance to chronic sublethal stress. When wild-type and transgenic plants were grown in 6-inch pots, the increase in seed yield accruing from suppression of DHS was approximately 4.5-fold greater than when the plants were grown in 12-inch pots. Thus, suppression of DHS appears to ameliorate the effects of sublethal stress engendered by growth in small containers.  相似文献   

4.
Deoxyhypusine synthase (DHS) mediates the first of two enzymatic reactions required for the post-translational activation of eukaryotic translation initiation factor 5A (eIF5A), which in turn is thought to facilitate translation of specific mRNAs. Analyses of GUS activity in transgenic Arabidopsis plants expressing the GUS reporter gene under regulation of the promoter for AtDHS revealed that the expression of DHS changes both spatially and temporally as development progresses. In particular, DHS is expressed not only in rosette leaves, but also in the anthers of developing flowers. To determine the role of DHS in leaves, transgenic plants in which DHS was selectively suppressed in rosettes of Arabidopsis plants were prepared. This was achieved by expressing AtDHS 3'-UTR cDNA as a transgene under regulation of the promoter for AtRbcS2, a gene encoding the small subunit of Rubisco. The dominant phenotypic traits of the DHS-suppressed plants proved to be a dramatic enhancement of both vegetative and reproductive growth. As well, the onset of leaf senescence in the DHS-suppressed plants was delayed by approximately 1 week, but there was no change in the timing of bolting. In addition, there was no evidence for the negative pleiotropic effects, including stunted reproductive growth and reduced seed yield, noted previously for transgenic plants in which DHS was constitutively suppressed. The results indicate that DHS plays a pivotal role in both growth and senescence.  相似文献   

5.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

6.
7.
8.
转ipt和反义ACO基因番茄的叶片衰老相关特性   总被引:3,自引:0,他引:3  
以ipt和反义ACO转化的两类转基因番茄纯系为材料,研究在植株不同生长发育阶段,不同叶位中,与叶片衰老相关的生理生化指标.结果表明:两类基因导入番茄后,均可增强内源iPA和IAA表达水平,增加或保持番茄叶片的叶绿素含量、提高光合效率,进而明显地延缓植株的叶片衰老,提高单株果实产量.但它们调控叶片衰老的途径不同,ipt主要通过提高CTK的水平延缓叶片衰老,而反义ACO则主要是通过抑制乙烯生成,间接提高IAA的水平来实现.  相似文献   

9.
Polygalacturonase (PG, EC 3.2.1.15), an enzyme commonly found in ripening fruit, has also been shown to be associated with abscission. A zone-specific rise in PG activity accompanies the abscission of both leaves and flowers of tomato (Lycopersicon esculentum Mill.) plants. Studies of transgenic plants expressing an antisense RNA for fruit PG indicate that although the enzyme activity in transgenic fruit is < 1 % of that in untransformed fruit, the PG activity in the leaf abscission zone increases during separation to a similar value to that in untransformed plants. The timing and rate of leaf abscission in transgenic plants are unaffected by the introduction of the antisense gene. A polyclonal antibody raised against tomato fruit PG does not recognise the leaf abscission protein. Furthermore a complementary DNA (cDNA) clone (pTOM6), which has been demonstrated to code for fruit PG, does not hybridise to mRNA isolated from the abscission-zone region of tomato leaves. These results indicate that the PG protein in abscission zones of tomato is different from that in the fruit, and that the gene coding for this protein may also be different.Abbreviation PG polygalacturonase The authors of this paper are grateful to David Jackson of the John Innes Institute, Norwich, UK for his assistance with the in-situ hybridisation work. This research was supported by an Agricultural and Food Research Council Post-Doctoral award to J.E.T., and by a grant to D.G. from the Science and Engineering Research Council Biotechnology Directorate in association with ICI seeds. The work was carried out under Ministry of Agriculture, Food and Fisheries licences.  相似文献   

10.
11.
12.
Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.  相似文献   

13.
There are two divergent fructokinase isozymes, Frk1 and Frk2 in tomato (Lycopersicon esculentum Mill.) plants. To investigate the physiological functions of each isozyme, the expression of each fructokinase mRNA was independently suppressed in transgenic tomato plants, and the respective phenotypes were evaluated. Suppression of Frk1 expression resulted in delayed flowering at the first inflorescence. Suppression of Frk2 did not effect flowering time but resulted in growth inhibition of stems and roots, reduction of flower and fruit number, and reduction of seed number per fruit. Localization of Frk1 and Frk2 mRNA accumulation by in situ hybridization in wild-type tomato fruit tissue indicated that Frk2 is expressed specifically in early tomato seed development. Fruit hexose and starch content were not effected by the suppression of either Frk gene alone. The results collectively indicate that flowering time is specifically promoted by Frk1 and that Frk2 plays specific roles in contributing to stem and root growth and to seed development. Because Frk1 and Frk2 gene expression was suppressed individually in transgenic plants, other significant metabolic roles of fructokinases may not have been observed if Frk1 and Frk2 play, at least partially, redundant metabolic roles.  相似文献   

14.
Transgenic tomato plants were produced with the isopentenyl transferase gene (ipt) ligated to a promoter that is active exclusively in sink tissue. Initially, transgenic plants had smaller, round-scale leaves, swollen stems, and exhibited early development of lateral shoots compared to wild type. Expression of the ipt gene resulted in the formation of unbranched roots on cuttings and delayed senescence in excised leaves. Callus and root formation occurred on excised leaves and leaf discs during dark incubation. The retention percentage of chlorophyll, as well as cytokinin in excised leaves or discs was significantly greater than wild type. Transgenic tomato fruit had elevated levels of cytokinins in the first days after fruit set and these levels were maintained longer during fruit development.  相似文献   

15.
Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studying gene function in plants. We showed that silencing of a phytoene desaturase (PDS) gene is maintained throughout TRV-PDS-inoculated tomato plants as well as in their flowers and fruit and is enhanced by low temperature (15 degrees C) and low humidity (30%). RT-PCR analysis of the PDS gene revealed a dramatic reduction in the level of PDS mRNA in leaves, flowers and fruits. Silencing of PDS results in the accumulation of phytoene, the desaturase substrate. In addition, the content of chlorophyll a, chlorophyll b and total chlorophyll in the leaves of PDS-silenced plants was reduced by more than 90%. We also silenced the LeEIN2 gene by infecting seedlings, and this suppressed fruit ripenning. We conclude that this VIGS approach should facilitate large-scale functional analysis of genes involved in the development and ripening of tomato.  相似文献   

16.
As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.  相似文献   

17.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   

18.
19.
Tomato (Lycopersicon esculentum var. Better Boy) plants were transformed with a tomato leaf wound-inducible polygalacturonase (PG) beta-subunit gene in the antisense orientation (PGbetaS-AS) under the control of the cauliflower mosaic virus 35S promoter. The leaves of the transgenic plants exhibited small localized lesions, which eventually enlarged and spread throughout the entire surfaces of the leaves, resulting in cell death. The same lesions were also observed in the peduncle of developing flowers, extending to the whole flower causing abscission, resulting in a sterile phenotype. Leaves of transgenic plants exhibited elevated levels of PG activity, hydrogen peroxide, and enhanced defense signaling in response to wounding and elicitor treatment. The defense signaling increased was accompanied by an increased resistance toward tobacco hornworm (Manduca sexta) larvae. The cumulative results suggest that in the absence of the beta-subunit protein in tomato leaves, an increase in PG activity occurred that led to an enhanced wound response, the formation of lesions leading to severe necrosis, and an abscission of developing flowers.  相似文献   

20.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号