首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
To find whether cytoplasmic streaming in Acetabularia is controlledby Ca2+, a tonoplast-permeabilized cell model was prepared usinga vacuolar perfusion technique. The cytoplasmic streaming remainedalmost normal after perfusion with EGTA medium (10 mM EGTA,40 mM PIPES, 5mM MgCl2 and 800 mM sorbitol, pH 6.9), but stoppedwithin 10 min when saponin medium (EGTA medium plus 50 µg/mlsaponin, 50 µg/ml hexokinase and 5 mM glucose) was perfused.This model system was reactivated with a solution containing0.5 mM ATP and different concentrations of Ca2+ (reactivationmedium). With the reactivation medium at pCa 6–5, theresumed streaming lasted for about 10 min before the cytoplasmaggregated. At pCa 4–3, the streaming was observed onlyfor a few minutes because the cytoplasm aggregated quickly.At pCa 7, no reactivated movement was observed. Reactivationwas not induced in an ATP- or Mg2+-deficient medium even inthe presence of an adequate concentration of Ca2+, and was inhibitedby 50 µg/ml cytochalasin B or 1 mM N-ethylmaleimide. We concluded from these observations that the cytoplasmic streamingin Acetabularia is very likely to be driven by the actomyosinsystem in the presence of Mg-ATP and Ca2+ at pCa 6–5. (Received October 31, 1984; Accepted April 1, 1985)  相似文献   

2.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

3.
We investigated the roles and relationships of plasma membrane Ca2+-ATPase (PMCA), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, and Na+/Ca2+ exchanger (NCX) in bladder smooth muscle contractility in Pmca-ablated mice: Pmca4-null mutant (Pmca4–/–) and heterozygous Pmca1 and homozygous Pmca4 double gene-targeted (Pmca1+/–Pmca4–/–) mice. Gene manipulation did not alter the amounts of PMCA1, SERCA2, and NCX. To study the role of each Ca2+ transport system, contraction of circular ring preparations was elicited with KCl (80 mM) plus atropine, and then the muscle was relaxed with Ca2+-free physiological salt solution containing EGTA. We measured the contributions of Ca2+ clearance components by inhibiting SERCA2 (with 10 µM cyclopiazonic acid) and/or NCX (by replacing NaCl with N-methyl-D-glucamine/HCl plus 10 µM KB-R7943). Contraction half-time (time to 50% of maximum tension) was prolonged in the gene-targeted muscles but marginally shortened when SERCA2 or NCX was inhibited. The inhibition of NCX significantly inhibited this prolongation, suggesting that NCX activity might be augmented to compensate for PMCA4 function in the gene-targeted muscles under nonstimulated conditions. Inhibition of SERCA2 and NCX as well as gene targeting all prolonged the relaxation half-time. The contribution of PMCA to relaxation was calculated to be 25–30%, with that of SERCA2 being 20% and that of NCX being 70%. PMCA and SERCA2 appeared to function additively, but the function of NCX might overlap with those of other components. In summary, gene manipulation of PMCA indicates that PMCA, in addition to SERCA2 and NCX, plays a significant role in both excitation-contraction coupling and the Ca2+ extrusion-relaxation relationship, i.e., Ca2+ homeostasis, of bladder smooth muscle. ATP2B; sarco(endo)plasmic reticulum Ca2+-ATPase 2; Na+/Ca2+ exchanger; homeostasis  相似文献   

4.
The possiblerole of altered extracellular Ca2+concentration([Ca2+]o)in skeletal muscle fatigue was tested on isolated slow-twitch soleusand fast-twitch extensor digitorum longus muscles of the mouse. Thefollowing findings were made. 1) Achange from the control solution (1.3 mM[Ca2+]o)to 10 mM[Ca2+]o,or to nominally Ca2+-freesolutions, had little effect on tetanic force in nonfatigued muscle.2) Almost complete restoration oftetanic force was induced by 10 mM[Ca2+]oin severely K+-depressed muscle(extracellular K+ concentration of10-12 mM). This effect was attributed to a 5-mV reversal of theK+-induced depolarization andsubsequent restoration of ability to generate action potentials(inferred by using the twitch force-stimulation strength relationship).3) Tetanic force depressed bylowered extracellular Na+concentration (40 mM) was further reduced with 10 mM[Ca2+]o.4) Tetanic force loss at elevatedextracellular K+ concentration (8 mM) and lowered extracellular Na+concentration (100 mM) was partially reversed with 10 mM[Ca2+]oor markedly exacerbated with low[Ca2+]o.5) Fatigue induced by using repeatedtetani in soleus was attenuated at 10 mM[Ca2+]o(due to increased resting and evoked forces) and exacerbated at low[Ca2+]o.These combined results suggest, first, that raised[Ca2+]oprotects against fatigue rather than inducing it and, second, that aconsiderable depletion of[Ca2+]oin the transverse tubules may contribute to fatigue.

  相似文献   

5.
The Ca2+ affinity andpermeation of the epithelial Ca2+ channel (ECaC1) wereinvestigated after expression in Xenopus oocytes. ECaC1displayed anomalous mole-fraction effects. Extracellular Ca2+ and Mg2+ reversibly inhibited ECaC1 wholecell Li+ currents: IC50 = 2.2 ± 0.4 µM (n = 9) and 235 ± 35 µM (n = 10), respectively. These values compare well with theCa2+ affinity of the L-type voltage-gated Ca2+(CaV1.2) channel measured under the same conditions,suggesting that high-affinity Ca2+ binding is awell-conserved feature of epithelial and voltage-gated Ca2+channels. Neutralization of D550 and E535 in the pore region had nosignificant effect on Ca2+ and Mg2+ affinities.In contrast, neutralization of D542 significantly decreasedCa2+ affinity (IC50 = 1.1 ± 0.2 mM,n = 6) and Mg2+ affinity(IC50 > 25 ± 3 mM, n = 4).Despite a 1,000-fold decrease in Ca2+ affinity in D542N,Ca2+ permeation properties and theCa2+-to-Ba2+ conductance ratio remainedcomparable to values for wild-type ECaC1. Together, our observationssuggest that D542 plays a critical role in Ca2+ affinitybut not in Ca2+ permeation in ECaC1.

  相似文献   

6.
Properties of the sarcoplasmic reticulum (SR) with respect to Ca2+ loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23°C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43°C). The ability of the SR to accumulate Ca2+ was significantly reduced by a factor of 1.9–2.1 after the temperature treatments due to a marked increase in SR Ca2+ leak, which persisted for at least 3 h after treatment. Results with blockers of Ca2+ release channels (ruthenium red) and SR Ca2+ pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca2+ leak was not through the SR Ca2+ release channel or the SR Ca2+ pump, although it is possible that the leak pathway was via oligomerized Ca2+ pump molecules. No significant change in the maximum SR Ca2+-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca2+-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O2) scavenger Tiron (20 mM), indicating that the production of O2 at elevated temperatures is responsible for the increase in SR Ca2+ leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca2+ handling that contribute to a marked increase in the SR Ca2+ leak and, consequently, to the reduction in the average coupling ratio between Ca2+ transport and SR Ca2+-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O2 production. skeletal muscle; calcium ion leak; superoxide; skinned fibers  相似文献   

7.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

8.
We previously showed that plasma membrane Ca2+-ATPase (PMCA) activity accounted for 25–30% of relaxation in bladder smooth muscle (8). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca2+ ([Ca2+]i) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1+/–, Pmca4+/–, Pmca4–/–, and Pmca1+/–Pmca4–/– mice. There were no differences in basal [Ca2+]i values between bladder preparations. KCl (80 mM) elicited both larger forces (150–190%) and increases in [Ca2+]i (130–180%) in smooth muscle from Pmca1+/– and Pmca1+/–Pmca4–/– bladders than those in WT or Pmca4–/–. The responses to carbachol (CCh: 10 µM) were also greater in Pmca1+/– (120–150%) than in WT bladders. In contrast, the responses in Pmca4–/– and Pmca1+/–Pmca4–/– bladders to CCh were significantly smaller (40–50%) than WT. The rise in half-times of force and [Ca2+]i increases in response to KCl and CCh, and the concomitant half-times of their decrease upon washout of agonist were prolonged in Pmca4–/– (130–190%) and Pmca1+/–Pmca4–/– (120–250%) bladders, but not in Pmca1+/– bladders with respect to WT. Our evidence indicates distinct isoform functions with the PMCA1 isoform involved in overall Ca2+ clearance, while PMCA4 is essential for the [Ca2+]i increase and contractile response to the CCh receptor-mediated signal transduction pathway. PMCA; bladder smooth muscle; gene-altered mice  相似文献   

9.
In the presence of 1–8 mM Ca2+ unilateral 10–15min irradiation with blue light can elicit negative phototropicbending in the tip-growing coenocytic fresh water alga, Vaucheriaterrestris (Xanthophyceae), when it is simultaneously irradiatedwith strong blue or green background light. By changing wavelength,fluence rate, and duration of background light and holding thoseof unilateral light (456 nm, 1.7 Wm–2) negative phototropicresponse was analyzed: the wavelength of the background lighthad to be shorter than 540 nm; red light (660 nm) was ineffectiveeven at very high fluence rates (100W.m–2). The negativebending was strongly and specifically dependent on the externalCa2+ concentration. Other divalent cations, Mg2+ and Ba2+, wereeither toxic or quite ineffective; Sr2+ could partly supportthe growth, but mediated neither positive nor negative phototropicbending. The rate of tip-growth was not significantly alteredbetween 106M and 10-6 mM Ca2+. Pre-irrradiation with the backgroundlight slightly increased the negative curvature; whereas thatwithout subsequent simultaneous irradiation does not cause negativebending, but rather increases the positive curvature. Three-mindelayed start of background light did not cause negative bendingany more. The present results strongly suggest that blue light elicitsan influx of Ca2+ at the apex of Vaucheria and that the increasedcytoplasmic Ca2+ regulates the sensitivity and direction ofphototropic response. (Received June 23, 1988; Accepted September 7, 1988)  相似文献   

10.
Internodal cells of Chara australis were subjected to two consecutiveintracellular perfusions with a Ca2+-free EGTA medium whichdisintegrated the tonoplast within about 10 minutes and thenwith a Ca2+-buffered medium. All perfusion media usually contained1 mM ATP. To stop the electrogenic pump, the internode was depletedof intracellular ATP. The excitability of the plasmalemma wasnot significantly influenced by intracellular free Ca2+ concentrationsup to 10–4 M. To trigger action potentials, minimum currentdensities of 1 to 2 µA cm–2 had to be applied atall tested Ca2+ concentrations. In the absence of cytoplasmicATP, excitability was completely lost at all Ca2+ concentrations. 1 Present address: Botanisches Institut der Universit?t Bonn,Venusbergweg 22, D-5300 Bonn, FRG. (Received September 22, 1984; Accepted March 6, 1985)  相似文献   

11.
Membrane ghosts were prepared from protoplasts of the greenalga Mougeotia, and the Ca2+-sensitivity of microtubules onthe ghosts was examined. Microtubules on the protoplast ghosts were not depolymerizedby 3 min treatment with 1 mM Ca2+. As the treatment was prolonged,some depolymerization of microtubules became evident, but evenafter 10 min about 50% of the ghosts showed no depolymerization.Ca2+ introduced into intact protoplasts seemed to be ineffectivein depolymerizing microtubules; abundant microtubules were presenton membrane ghosts prepared from protoplasts which had beentreated with 2x10–5M Ca2+-ionophore A23187 [GenBank] plus 1 mM Ca2+for 20 or 30 min. Neither 3 min treatment with 0.2% Triton X-100 nor with 1 mMCa2+ solution containing 5 min MgSO4 and 100 mM KCl caused depolymerisationof microtubules on protoplast ghosts. However, when given successively,these treatments caused complete depolymerization of microtubules. These results suggest that Mougeotia microtubules are stableto Ca2+ and that the stability is conferred by a microtubule-associatedfactor which can easily be removed by Triton X-100 treatment. (Received July 19, 1985; Accepted October 25, 1985)  相似文献   

12.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

13.
SYNOPSIS. Actomyosin was extracted from skeletal muscle of Coryphaenoides,a benthic fish living at 2,200 meters depth, at a temperatureof 2°C, or less, and at pressure of 3,000 psi. On SDS-ureaelectrophoresis on acrylamide gel, the actomyosin extracts yieldcomponents of apparent molecular weight 210,000 (myosin heavychains), 47,000 (actin), 35,000 (tropomyosin and/or troponinsubunits), and 13,000 (myosin light chains). The Mg2+-ATPaseof Coryphaenoides actomyosin shows a complex Arrhenius plot,with marked denaturation at temperatures above 30°C, anddiminished temperature sensitivity at temperatures below 15°C.Mg2+-ATPase is inhibited by pressure, with activation volumesof + 160 cc/mole at 25°C, and + 230 cc/mole at 2°C.Ca2+-ATPase of actomyosin exhibits the same pH, temperature,and pressure dependence as Ca2+-ATPase of myosin. The overalldata would be consistent with a positive activation volume thatis independent of temperature (to first approximation) and isrelated to the interaction of actin and myosin, and a negativeactivation volume that is temperature dependent and is relateddirectly to activation of myosin ATPase. The net effect appearsto be an adaptive mechanism whereby Mg2+-ATPase of Coryphaenoidesactomyosin is relatively insensitive to pressure and temperatureunder conditions encountered by the living fish.  相似文献   

14.
In Vigna mungo cotyledons, the -amylase activity increased markedlyduring germination at 27°C in the dark, while the activityof other amylases was very low. The -amylase was purified from4-day-old cotyledons by affinity chromatography on epoxyactivatedSepharose 6B substituted with rß-cyclodextrin andby column chromatography on Bio-Gel P-200. Gel filtration andpolyacrylamide gel electrophoresis showed that the enzyme existsmostly as a monomer (43,000 daltons), but partially aggregatesto form dimer, trimer and further multimers. Ca2+ protectedthe -amylase against heat inactivation. Incubation of the enzymewith 5 mM EDTA or dialysis against 10 mM EDTA resulted in a50–90% loss of activity. The inactivation was partiallyreversed by the addition of Ca2+. Other properties, such asthe amino acid composition, Km value, pH optimum and activationenergy were similar to those of other plant -amylases. (Received May 6, 1981; Accepted June 22, 1981)  相似文献   

15.
The aim of the present study was to investigate the properties and role of capacitative Ca2+ entry (CCE) in interstitial cells (IC) isolated from the rabbit urethra. Ca2+ entry in IC was larger in cells with depleted intracellular Ca2+ stores compared with controls, consistent with influx via a CCE pathway. The nonselective Ca2+ entry blockers Gd3+ (10 µM), La3+ (10 µM), and Ni2+ (100 µM) reduced CCE by 67% (n = 14), 65% (n = 11), and 55% (n = 9), respectively. These agents did not inhibit Ca2+ entry when stores were not depleted. Conversely, CCE in IC was resistant to SKF-96365 (10 µM), wortmannin (10 µM), and nifedipine (1 µM). Spontaneous transient inward currents were recorded from IC voltage-clamped at –60 mV. These events were not significantly affected by Gd3+ (10 µM) or La3+ (10 µM) and were only slightly decreased in amplitude by 100 µM Ni2+. The results from this study demonstrate that freshly dispersed IC from the rabbit urethra possess a CCE pathway. However, influx via this pathway does not appear to contribute to spontaneous activity in these cells. smooth muscle; patch clamp; spontaneous transient inward currents  相似文献   

16.
Ion chromatographic methods determined organic acids and mainnutrient minerals in the apoplastic solution from leaves ofseveral Fagaceae (Quercus ilex L., Quercus cerris L., Quercusvirgiliana (Ten.) Ten, and Fagus sylvatica L.). The anions oforganic acids found in high amounts (250 to 650 µM) werequinate, malate, and oxalate. Lactate, pyruvate, formate andacetate were detected in relatively low amounts with concentrationsbetween 20 and 200 µM. The total concentration of organicacids in the apoplastic sap ranged between 1.5 and 2 mM. Thetotal concentration of inorganic cations (K+, Mg2+, NH4+, Ca2+,Na+) and anions (C1, NO3, SO2–4 and PO3–4)in the apoplastic sap varied between 5 and 10 mM, and 0.35 and1.8 mM, respectively. We conclude that the concentration oforganic acid ions in the leaf apoplast depends mainly on theexchange with the leaf cells and is influenced by the electrochemicalgradient between the symplast and the apoplast in relation tothe water potential of the leaf. The determination of formateand acetate in the apoplastic compartment of leaves lend weightto the argument that the production of these acids by treesis a important emission source to the atmosphere. (Received June 9, 1998; Accepted April 8, 1999)  相似文献   

17.
Glutamate dehydrogenase [L-glutamate : NAD(P) oxidoreductase(deaminating) EC 1.4.1.3 [EC] .] has been purified from the mitochondrialfraction of green tobacco callus tissue. The enzyme was stableat –20?C for several months. The pH optimum for the aminationreaction was 7.8. But the optimum for the deamination reactionwas indistinct because it was in an extremely alkaline domain.Relative activities of the enzyme for amination were 50 withNADH and 10 with NADPH, and those for deamination were 5 withNAD and 1 with NADP at pH 7.9. The enzyme was inactivated by EDTA, but its activity partiallyrestored by the addition of divalent cations such as Ca2+, Mn2+,Zn2+, Cu2+ and Mg2+. Ca2+, Mn2+ and Zn2+ activated the reductiveamination 141, 122 and 39% respectively, but these divalentcations scarcely affected the oxidative deamination. Citrate and fumarate acted as inhibitors for reductive amination,and oxaloacetate for oxidative deamination of the enzyme reaction.These inhibitions were counteracted by the addition of Ca2+.ATP and ADP exerted an inhibitory effect on both directionsof the enzyme reaction. The inhibitory effect was hardly preventedby the addition of AMP. Ca2+ caused considerable recovery fromthe inhibition of ATP and ADP. Amino acids scarcely affectedthe enzyme activity. Michaelis constants were 0.28 mM for NAD, 0.065 mM for NADH,2.19 mM for a-ketoglutarate, 43.6 mM for ammonium chloride and4.24 mM for L-glutamate. 1To whom requests for reprints should be addressed. (Received June 25, 1980; )  相似文献   

18.
Ethanol strongly augments secretin-stimulated, but not acetylcholine (ACh)-stimulated, fluid secretion from pancreatic duct cells. To understand its mechanism of action, we examined the effect of short-chain n-alcohols on fluid secretion and intracellular Ca2+ concentration ([Ca2+]i) in guinea pig pancreatic ducts. Fluid secretion was measured by monitoring the luminal volume of isolated interlobular ducts. [Ca2+]i was estimated using fura-2 microfluorometry. Methanol and ethanol at 0.3–10 mM concentrations significantly augmented fluid secretion and induced a transient elevation of [Ca2+]i in secretin- or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-stimulated ducts. However, they failed to affect fluid secretion and [Ca2+]i in unstimulated and ACh-stimulated ducts. In contrast, propanol and butanol at 0.3–10 mM concentrations significantly reduced fluid secretion and decreased [Ca2+]i in unstimulated ducts and in ducts stimulated with secretin, DBcAMP, or ACh. Both stimulatory and inhibitory effects of n-alcohols completely disappeared after their removal from the perfusate. Propanol and butanol inhibited the plateau phase, but not the initial peak, of [Ca2+]i response to ACh as well as the [Ca2+]i elevation induced by thapsigargin, suggesting that they inhibit Ca2+ influx. Removal of extracellular Ca2+ reduced [Ca2+]i in duct cells and completely abolished secretin-stimulated fluid secretion. In conclusion, there is a distinct cutoff point between ethanol (C2) and propanol (C3) in their effects on fluid secretion and [Ca2+]i in duct cells. Short-chain n-alcohols appear to affect pancreatic ductal fluid secretion by activating or inhibiting the plasma membrane Ca2+ channel. intracellular calcium; acetylcholine  相似文献   

19.
Effects of cytoplasmic Ca2+ on the electrical properties ofthe plasma membrane were investigated in tonoplast-free cellsof Chara australis that had been internally perfused with media,containing either 1 mM ATP to fuel the electrogenic pump orhexokinase and glucose to deplete the ATP and stop the pump. In the presence of ATP, cytoplasmic Ca2+ up to 2.5?10–5M did not affect the membrane potential (about -190 mV), butmembrane resistance decreased uniformly with increasing [Ca2+]i.In the absence of ATP, the membrane potential, which was onlyabout -110 mV, was depolarized further by raising [Ca2+]i from1.4?10–6 to 2.5?10–5 M. Membrane resistance, whichwas nearly the twofold that of ATP-provided cells, decreasedmarkedly with an increase in [Ca2+]i from zero to 1.38?10–6M, but showed no change for further increases. Internodal cellsof Nitellopsis obtusa were more sensitive to intracellular Ca2+with respect to membrane potential than were those of Charaaustralis, reconfirming the results obtained by Mimura and Tazawa(1983). The effect of cytoplasmic Ca2+ on the ATP-dependent H+ effluxwas measured. No marked difference in H+ effluxes was detectedbetween zero and 2.5?10–5 M [Ca2+]i; but, at 10–4M the ATP-dependent H+ efflux was almost zero. Ca2+ efflux experimentswere done to investigate dependencies on [Ca2+]i and [ATP]i.The efflux was about 1 pmol cm–2 s–1 at all [Ca2+]iconcentrations tested (1.38?10–6, 2.5?10–5, 10–4M).This value is much higher than the influx reported by Hayamaet al. (1979), and this efflux was independent of [ATP]i. Thepossibility of a Ca2+-extruding pump is discussed. 1 Present address: Botanisches Institut der Universit?t Bonn,Venusbergweg 22, 5300 Bonn, F.R.G. (Received September 22, 1984; Accepted February 19, 1985)  相似文献   

20.
The effect of different conditions of transfer (+;1 °C withwater, +20 °C with and without water) from the natural habitatand laboratory acclimation procedure (with and without bottomsediment) on the acid-base and electrolyte status of the freshwateruniomd mussel Anodonta anatina (L.) was studied. The shift inthe acid-base status of A. anatina during the transfer was smallerat 1°C than at 20°C. The pO2 content of the haemolymphdeclined significantly under all three transfer conditions.Neither the transfer nor the laboratory acclimation affectedhaemolymph [Na+]. However, during transfer at 1°C the haemolyraph[Ca2+] did not change, whereas [K+] increased up to three fold.Haemolymph [Ca2+] increased when mussels were transferred at20°C After a 17-day aquarium acclimation, the pO2 of all the musselskept in the sediment had returned to the field level and thetransfer seemed to have had no effect on the pCH of the haemolymph.Conversely, in the groups kept without sediment, the pO2 continuouslyremained above the field level. Whereas the [K+] of all themussels declined to the field level, the haemolymph [Ca2+] remainedelevated throughout the entire acclimation period of 17 days. (Received 22 May 1995; accepted 20 October 1995)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号