首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper, we propose a novel multi-objective ant colony optimizer (called iMOACO\(_{\mathbb {R}}\)) for continuous search spaces, which is based on ACO\(_{\mathbb {R}}\) and the R2 performance indicator. iMOACO\(_{\mathbb {R}}\) is the first multi-objective ant colony optimizer (MOACO) specifically designed to tackle continuous many-objective optimization problems (i.e., multi-objective optimization problems having four or more objectives). Our proposed iMOACO\(_{\mathbb {R}}\) is compared to three state-of-the-art multi-objective evolutionary algorithms (NSGA-III, MOEA/D and SMS-EMOA) and a MOACO algorithm called MOACO\(_{\mathbb {R}}\) using standard test problems and performance indicators taken from the specialized literature. Our experimental results indicate that iMOACO\(_{\mathbb {R}}\) is very competitive with respect to NSGA-III and MOEA/D and it is able to outperform SMS-EMOA and MOACO\(_{\mathbb {R}}\) in most of the test problems adopted.  相似文献   

3.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

4.
Tumour metastasis in the lymphatics is a crucial step in the progression of breast cancer. The dynamics by which breast cancer cells (BCCs) travel in the lymphatics remains poorly understood. The goal of this work is to develop a model capable of predicting the shear stresses metastasising BCCs experience using numerical and experimental techniques. This paper models the fluidic transport of large particles (\(\eta =d_{\mathrm{p}}/W=0.1-0.4\) where \(d_{\mathrm{p}}\) is the particle diameter and W is the channel width) subjected to lymphatic flow conditions (\({ Re}=0.04\)), in a \(100\times 100\,\upmu \hbox {m}\) microchannel. The feasibility of using the dynamic fluid body interaction (DFBI) method to predict particle motion was assessed, and particle tracking experiments were performed. The experiments found that particle translational velocity decreased from the undisturbed fluid velocity with increasing particle size (5–14% velocity lag for \(\eta =0.1-0.3\)). DFBI simulations were found to better predict particle behaviour than theoretical predictions; however, mesh restrictions in the near-wall region (\(0.2\,\mathrm{W}>y>0.8\,\mathrm{W}\)) result in computationally expensive models. The simulations were in good agreement with the experiments (\(<12\%\) difference) across the channel (\(0.2\,\mathrm{W}\le y\le 0.8\,\mathrm{W}\)), with differences up to 25% in the near-wall region. Particles experience a range of shear stresses (0.002–0.12 Pa) and spatial shear gradients (\(0.004-0.137\,\hbox {Pa}/\upmu \hbox {m}\)) depending on their size and radial position. The predicted shear gradients are far in excess of values associated with BCC apoptosis (\(0.004-0.023\,\hbox {Pa}/\upmu \hbox {m}\)). Increasing our understanding of the shear stress magnitudes and gradients experienced by BCCs could be leveraged to elucidate whether a particular BCC size or location exists that encourages metastasis within the lymphatics.  相似文献   

5.
Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups’ activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups—hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors—to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about \(0.1 {^{\circ }}\) over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA (\(\sim \)0.01\({^{\circ }}\)–0.04\({^{\circ }})\) and FA (\(\sim \)0.004\({^{\circ }}\)\(0.2{^{\circ }}\)), except hip extensors and hip adductors, which showed a tendency to increase the FA (\(\sim \)0.004\({^{\circ }}\)\(0.02{^{\circ }}\)). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.  相似文献   

6.
Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (\(F_{\mathrm{ST}}= 0.005\)) and high levels of genetic variability (\(H_{\mathrm{o}}= 0.883\); \(H_{\mathrm{e}}= 0.621\)); we also found a small population size (\(N_{\mathrm{e}} = 8.8\)), the presence of historical (\(M =\) 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (\(F_{\mathrm{IS}} = -\)0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.  相似文献   

7.
Experimental investigations have shown that the pre-Bötzinger complex (pre-BötC) within the mammalian brainstem generates the inspiratory phase of respiratory rhythm. Based on a single-compartment model of a pre-BötC inspiratory neuron, we, in this paper, use semi-analytical, numerical as well as fast-slow dynamical methods to investigate the effects of sodium conductance (\(g_{\text{Na}}\)) and potassium conductance (\(g_{{\text{K}}}\)) on the firing activities of pre-BötC and try to reveal the dynamical mechanisms behind them. We show how \(g_{{\text{Na}}}\) and \(g_{\text{K}}\) affect the bifurcations of the fast-subsystem and how the the firing patterns of pre-BötC transit according to the bifurcations.  相似文献   

8.
The Pacinian corpuscle (PC) is the cutaneous mechanoreceptor responsible for sensation of high-frequency (20–1000 Hz) vibrations. PCs lie deep within the skin, often in multicorpuscle clusters with overlapping receptive fields. We developed a finite-element mechanical model of one or two PCs embedded within human skin, coupled to a multiphysics PC model to simulate action potentials elicited by each PC. A vibration was applied to the skin surface, and the resulting mechanical signal was analyzed using two metrics: the deformation amplitude ratio (\({\rho }_{\mathrm{1S}} \), \({\rho }_{\mathrm{2S}} )\) and the phase shift of the vibration (\({\delta }_{\mathrm{S}1}^{\mathrm{mech}} \), \({\delta }_{\mathrm{S}2}^{\mathrm{mech}} )\) between the stimulus and the PC. Our results showed that the amplitude attenuation and phase shift at a PC increased with distance from the stimulus to the PC. Differences in amplitude (\(\rho _{12} )\) and phase shift (\({\delta }_{12}^{\mathrm{mech}} )\) between the two PCs in simulated clusters directly affected the interspike interval between the action potentials elicited by each PC (\({\delta }_{12}^{\mathrm{spike}} )\). While \({\delta }_{12}^{\mathrm{mech}} \) had a linear relationship with \({\delta }_{12}^{\mathrm{spike}} \), \(\rho _{12} \)’s effect on \({\delta }_{12}^{\mathrm{spike}} \) was greater for lower values of \(\rho _{12} \). In our simulations, the separation between PCs and the distance of each PC from the stimulus location resulted in differences in amplitude and phase shift at each PC that caused \({\delta }_{12}^{\mathrm{spike}} \) to vary with PC location. Our results suggest that PCs within a cluster receive different mechanical stimuli which may enhance source localization of vibrotactile stimuli, drawing parallels to sound localization in binaural hearing.  相似文献   

9.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

10.
This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories’ fundamental frequency matches the one of the experimental trajectories in \(98.6\%\) of the recordings. The relative error of the model trajectory amplitudes is on average \(9.5\%\). The experiments feature a mean subglottal pressure of 10.16 (SD \(= 2.31\)) \({\text {cmH}}_2{\text {O}}\); in the model, it was on average 7.61 (SD \(= 2.40\)) \({\text {cmH}}_2{\text {O}}\). A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD \(= 1.80\)) \({\text {cmH}}_2{\text {O}}\) or \(27.5\%\). A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.  相似文献   

11.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two \(\mathrm{Cl}^-/\mathrm{HCO}_3^-\) exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by \(\mathrm{Cl}^-\) movement. Here, a basolateral \(\mathrm{Na}^+/ \mathrm{K}^+\) adenosine triphosphatase pump (NaK-ATPase) and a \(\mathrm{Na}^+\)\(\mathrm{K}^+\)\(2 \mathrm{Cl}^-\) cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with \(\mathrm{Cl}^-\) well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of \(\mathrm{Ca}^{2+}\) ions from the internal stores of acinar cells, which triggers saliva secretion. \(\mathrm{Ca}^{2+}\)-dependent \(\mathrm{Cl}^-\) and \(\mathrm{K}^+\) channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that \(\mathrm{Cl}^-/ \mathrm{HCO}_3^-\) anion exchangers (Ae), coupled with a basolateral \(\mathrm{Na}^+/\hbox {proton}\) (\(\hbox {H}^+\)) (Nhe1) antiporter, regulate intracellular pH and act as a secondary \(\mathrm{Cl}^-\) uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823–G837, 1992; Melvin et al. in Annu Rev Physiol 67:445–469, 2005.  https://doi.org/10.1146/annurev.physiol.67.041703.084745). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate \(30\%\) decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677–10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary \(\mathrm{Cl}^-\) uptake and thus a key mechanism for saliva secretion. Here, by using ‘in-silico’ Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger’s cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.  相似文献   

12.
In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR \((\tau _{\mathrm{SR}})\) can be found in the literature. Here, an experiment is presented that allows measurement of \(\tau _{\mathrm{SR}}\) up to values of about 10 h. The membrane skeleton was deformed passively by changing the spontaneous curvature of the bilayer thus transforming the natively biconcave red cells into echinocytes. This shape and the concomitant deformation of the skeleton were kept up to 4 h by incubation at 37 ℃. During this period, no plastic deformation (creep) was observed. After the incubation, the spontaneous curvature was returned to normal. The resulting shape was smooth showing no remnants of the echinocytic shape. Both observations indicate \(\tau _{\mathrm{SR}}\gtrapprox \) 10 h. This result is in gross disagreement to postulates or assumptions existing in the literature.  相似文献   

13.
A variety of natural or synthetic calcium phosphate (CaP)-based scaffolds are currently produced for dental and orthopaedic applications. These scaffolds have been shown to stimulate bone formation due to their biocompatibility, osteoconductivity and osteoinductivity. The release of the \(\hbox {Ca}^{2+}\) ions from these scaffolds is of great interest in light of the aforementioned properties. It can depend on a number of biophysicochemical phenomena such as dissolution, diffusion and degradation, which in turn depend on specific scaffold characteristics such as composition and morphology. Achieving an optimal release profile can be challenging when relying on traditional experimental work alone. Mathematical modelling can complement experimentation. In this study, the in vitro dissolution behaviour of four CaP-based scaffold types was investigated experimentally. Subsequently, a mechanistic finite element method model based on biophysicochemical phenomena and specific scaffold characteristics was developed to predict the experimentally observed behaviour. Before the model could be used for local \(\hbox {Ca}^{2+}\) ions release predictions, certain parameters such as dissolution constant (\(k_{\mathrm{dc}}\)) and degradation constant (\(k_\mathrm{sc}\)) for each type of scaffold were determined by calibrating the model to the in vitro dissolution data. The resulting model showed to yield release characteristics in satisfactory agreement with those observed experimentally. This suggests that the mathematical model can be used to investigate the local \(\hbox {Ca}^{2+}\) ions release from CaP-based scaffolds.  相似文献   

14.
Ligament sprains, defined as tearing of bands of fibrous tissues within ligaments, account for a majority of injuries to the foot and ankle complex in field-based sports. External rotation of the foot is considered the primary injury mechanism of syndesmotic ankle sprains with concomitant flexion and inversion/eversion associated with particular patterns of ligament trauma. However, the influence of the magnitude and direction of loading vectors to the ankle on the in situ stress state of the ligaments has not been quantified in the literature. The objective of the present study was to search for the maximum injury tolerance of a human foot with an acceptable subfailure distribution of individual ligaments. We used a previously developed and comprehensively validated foot and ankle model to reproduce a range of combined foot rotation experienced during high-risk sports activities. Biomechanical computational investigation was performed on initial foot rotation from \(20{^{\circ }}\) of plantar flexion to \(15{^{\circ }}\) of dorsiflexion, and from \(15{^{\circ }}\) of inversion to \(15{^{\circ }}\) of eversion prior to external rotation. Change in initial foot rotation shifted injury initiation among different ligaments and resulted in a wide range of injury tolerances at the structural level (e.g., 36–125 Nm of rotational moment). The observed trend was in agreement with a parallel experimental study that initial plantar flexion decreased the incidence of syndesmotic injury compared to a neutral foot. A mechanism of distributing even loads across ligaments subjected to combined foot rotations was identified. This mechanism is potential to obtain the maximum load-bearing capability of a foot and ankle while minimizing the injury severity of ligaments. Such improved understanding of ligament injuries in athletes is necessary to facilitate injury management by clinicians and countermeasure development by biomechanists.  相似文献   

15.
To facilitate the development of new materials for use in batteries, it is necessary to develop ab initio full-electron computational techniques for modeling potential new battery materials. Here, we tested density functional theory procedures that are accurate enough to obtain the energetics of a zinc/copper voltaic cell. We found the magnitude of the zero-point energy correction to be 0.01–0.2 kcal/mol per atom or molecule and the magnitude of the dispersion correction to be 0.1–0.6 kcal/mol per atom or molecule for Zn n , (H2O) n , \( \mathrm{Zn}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), \( \mathrm{Cu}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), and Cu n . Counterpoise correction significantly affected the values of ?\( {E}_n^{\mathrm{abs}} \), ?\( {E}_n^{\mathrm{coh}} \), and ?Esolv by 1.0–3.1 kcal/mol per atom or molecule at the B3PW91/6-31G(d) level of theory, but by only 0.04–0.4 kcal/mol per atom or molecule at the B3PW91/cc-pVTZ level of theory. The application of B3PW91/6-31G(d) yielded results that differed from macroscopic experimental values by 0.1–7.1 kcal/mol per atom or molecule, whereas applying B3PW91/cc-pVTZ produced results that differed from macroscopic experimental values by 0.1–4.8 kcal/mol per atom or molecule, with the smallest differences occurring for reactions with a small macroscopic experimental ?E and the largest differences occurring for reactions with a large macroscopic experimental ?E, implying size consistency.  相似文献   

16.
Humans are often colonized by polymorphic bacteria such as Streptococcus pneumoniae, Bordetella pertussis, Staphylococcus Aureus, and Haemophilus influenzae. Two co-colonizing pathogen clones may interact with each other upon host entry and during within-host dynamics, ranging from competition to facilitation. Here we examine the significance of these exploitation strategies for bacterial spread and persistence in host populations. We model SIS epidemiological dynamics to capture the global behavior of such multi-strain systems, focusing on different parameters of single and dual colonization. We analyze the impact of heterogeneity in clearance and transmission rates of single and dual colonization and find the criteria under which these asymmetries enhance endemic persistence. We obtain a backward bifurcation near \(R_0 = 1\) if the reproductive value of the parasite in dually infected hosts is sufficiently higher than that in singly infected ones. In such cases, the parasite is able to persist even in sub-threshold conditions, and reducing the basic reproduction number below 1 would be insufficient for elimination. The fitness superiority in co-colonized hosts can be attained by lowering net parasite clearance rate (\(\gamma _\mathrm{{d}}\)), by increasing transmission rate (\(\beta _\mathrm{{d}}\)), or both, and coupling between these traits critically constrains opportunities of pathogen survival in the \(R_0<1\) regime. Finally, using an adaptive dynamics approach, we verify that despite their importance for sub-threshold endemicity, traits expressed exclusively in coinfection should generally evolve independently of single infection traits. In particular, for \(\beta _\mathrm{{d}}\) a saturating parabolic or hyperbolic function of \(\gamma _\mathrm{{d}}\), co-colonization traits evolve to an intermediate optimum (evolutionarily stable strategy, ESS), determined only by host lifespan and the trade-off parameters linking \(\beta _\mathrm{{d}}\) and \(\gamma _\mathrm{{d}}\). Our study invites more empirical attention to the dynamics and evolution of parasite life-history traits expressed exclusively in coinfection.  相似文献   

17.
For more than a decade, the power consumption of data centers has been addressed from different perspectives. Many solutions have been proposed to reduce (or optimize) this power consumption, such as controlling the operation of the servers in data centers. However, these approaches have not yet reached their optimum goals. Existing power control solutions using CPU frequency with an ad hoc or frequency modulator approach are not sufficient. In this paper, we review the power consumption effects of different configuration settings applied to the server’s CPU. We propose our local power controller using frequency scheduling (LPC\(_\mathrm{FreqSchd}\)), which is a server-level power controller that depends on an extended gain scheduling technique. Our proposed LPC\(_\mathrm{FreqSchd}\) considers the impact of different CPU configuration settings that are typically not considered simultaneously, such as the allocated CPU credits and CPU frequency level. Through a real experimental test bed, our LPC\(_\mathrm{FreqSchd}\) exhibits effective power management of different types of machines and outperforms other existing approaches, such as ad hoc and frequency modulation, when the power budget is low. Moreover, our proposed LPC\(_\mathrm{FreqSchd}\) has a very lightweight control actuation overhead compared with other approaches: approximately \(1/10 \mathrm{th}\) of the ad hoc approach’s overhead and \(1/100 \mathrm{th}\) of the frequency modulator approach’s overhead. This lightweight control actuation overhead reduces the power consumption overhead caused by the controller, and it could be used by other controllers, such as performance or thermal controllers running on the same server.  相似文献   

18.
19.
A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined \(-20^{\circ }\) to \(100^{\circ }\) with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans (\(30.3~\upmu \)m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10\(^{\circ }\)\(30^{\circ }\)) are more robust than the predicted peak load magnitudes (range 2344.8–4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: \(18.2\pm 2.0^{\circ }\), predicted: \(20.0^{\circ }\)) and magnitude (in vivo: \(2707.6\pm 443.3~\hbox {N}\), predicted: \(3372.2\pm 597.9~\hbox {N}\)). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.  相似文献   

20.
The Arabian oryx (Oryx leucoryx) historically ranged across the Arabian Peninsula and neighboring countries until its extirpation in 1972. In 1963–1964 a captive breeding program for this species was started at the Phoenix Zoo (PHX); it ultimately consisted of 11 animals that became known as the ‘World Herd’. In 19781979 a wild population was established at the Shaumari Wildlife Reserve (SWR), Jordan, with eight descendants from the World Herd and three individuals from Qatar. We described the mtDNA and nuclear genetic diversity and structure of PHX and SWR. We also determined the long-term demographic and genetic viability of these populations under different reciprocal translocation scenarios. PHX displayed a greater number of mtDNA haplotypes (n = 4) than SWR (n = 2). Additionally, PHX and SWR presented nuclear genetic diversities of \(\bar{N}_{\text{A}}\) = 2.88 vs. 2.75, \(\bar{H}_{\text{O}}\) = 0.469 vs. 0.387, and \(\bar{H}_{\text{E}}\) = 0.501 vs. 0.421, respectively. Although these populations showed no signs of inbreeding (\(\bar{F}_{\text{IS}}\) ≈ 0), they were highly differentiated (\(G^{\prime\prime}_{\text{ST}}\) = 0.580; P < 0.001). Migration between PHX and SWR (Nm = 1, 4, and 8 individuals/generation) increased their genetic diversity in the short-term and substantially reduced the probability of extinction in PHX during 25 generations. Under such scenarios, maximum genetic diversities were achieved in the first generations before the effects of genetic drift became predominant. Although captive populations can function as sources of genetic variation for reintroduction programs, we recommend promoting mutual and continuous gene flow with wild populations to ensure the long-term survival of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号