首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cation transport through a chloroform liquid membrane by cyclic octapeptides—cyclo(Leu-Pro)4, cyclo(Phe-Pro)4, and cyclo[Lys(Z)-Pro]4—was investigated. All of these cyclic octapeptides transported K+ and Ba2+, and the rate of cation transport was correlated with the ability to extract cations from the aqueous phase to the chloroform phase. Among them, cyclo (Leu-Pro)4 was the most efficient and transported K+ and Ba2+ selectively from other alkali and alkaline earth cations, respectively. The rate of K+ transport by cyclo(Leu-Pro)4 was about one-third as fast as that by dicyclohexyl 18-crown-6. Picrate anion transport against its concentration gradient was observed by cyclo(Leu-Pro)4, which is conjugated with the selective transport of K+. Complex formation in a liposome between cyclo(Leu-Pro)4 and Ba2+ was observed, but the binding constant was low.  相似文献   

2.
Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4 was investigated in relation to conformation. In an alcohol solution, cyclo(Phe-Pro)4 did not form complexes. However, cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 formed complexes selectively with Ba2+ and Ca2+ ions. Changing the solvent from alcohol to acetonitrile, the complexation behavior was very different. In acetonitrile, cyclo(Phe-Pro)4 was found to form a complex with Ba2+, and CD spectra of cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 changed sharply on complexation with K+. Rate constants of the complex formation between the cyclic octapeptides and metal salts were in the range of 0.7–12 L mol?1 min?1 in an alcohol solution. One of the two types of complex formation in acetonitrile was much faster than that in an alcohol solution.  相似文献   

3.
N.m.r. and c.d. spectroscopy have been used to study the interactions of cyclic hexapeptide cyclo(Pro-Sar-Sar)2 with metal ions and ammonium ions. Cyclo(Pro-Sar-Sar)2 was found to form complexes with Li+, K?, Ba2+ and Cu2+, accompanying the conformational change into a single conformer, and the conformation of cyclo(Pro-Sar-Sar)2 in the Li+-complex was different from that in the Cu2+-complex. These findings indicate conformational flexibility of cyclo(Pro-Sar-Sar)2. The equilibrium constant for the complexation with Li+ was 2.3 × 102l mol?1, and cyclo(Pro-Sar-Sar)2 adopted an asymmetric conformation in the complex. The addition of α-amino acid ester hydrochloride also caused the conformational change of cyclo(Pro-Sar-Sar)2), but in this case it did not converge into a single conformation. This type of interaction was strengthened with aromatic α-amino acid ester hydrochloride due to the aromatic-amide interactions. Finally, the rates of exchange between unbound α-amino acid ester hydrochlorides and those complexed with cyclo(Pro-Sar-Sar)2 were found to be different, according to the nature of α-amino acid.  相似文献   

4.
Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the divalent Sr2+ (and Ba2+) cations. 1,3-Alternate calix[4]arene tetraguanosine hardly shows any improvement in the extraction percentages compared to its reference compound 1,3-alternate calix[4]arene tetraamide. This indicates that one G-quartet does not provide efficient cation complexation under these conditions. In the case of the lipophilic isoguanosine derivative there is a cation size dependent affinity for the monovalent cations (Cs+ ? Rb+ ? K+), but not for the divalent cations (Ca2+ > Ba2+ > Sr2+ > Mg2+). In competition experiments the isoguanosine derivative, unlike guanosine, does not discriminate between monovalent and divalent cations, giving an almost equal extraction of Cs+ and Ba2+.  相似文献   

5.
Cyclic di- and tetrapeptides bearing carboxyl or carboxylate groups, cyclo[Glu(OBzl)-Glu(OMe)], cyclo[Glu-Glu(OMe)], cyclo(Glu-Glu), cyclo[Glu(OMe)-Pro)2, and cyclo(Glu-Pro)2, were synthesized and investigated on the intramolecular interaction of carboxyl side chains in the complexation with metal ions in relation with the conformation. The three kinds of cyclic dipeptides were found to take a flagpole boat conformation. Folded conformation of side chains was predominant for cyclo[Glu(OBzl)-Glu(OMe)] and cyclo[Glu-Glu(OMe)]. However, cyclo(Glu-Glu) took an unfolded conformation. Intramolecular interaction of carboxyl groups was observed neither in free state nor in complexation with metal ions. The intramolecular interaction of carboxyl groups was observed in the case of cyclo(Glu-Pro)2 in the absence of metal ions added. Cyclo[Glu(OMe)-Pro]2 and cyclo(Glu-Pro)2 formed a complex with Ca2+ and Ba2+ without participation of side chains.  相似文献   

6.
The complexes of cyclodisarcosyl (N,N′-dimethyldiketopiperazine) have been synthesized with copper perchlorate, lithium perchlorate, barium perchlorate, silver perchlorate, silver nitrate, and boron trifluoride. It has been shown by infrared absorption spectra that the metal cations coordinate to carbonyl groups of the peptide to form insoluble complexes. It has been suggested that the complexation takes place by ion–dipole interaction. Since a linear analog of the peptide formed no insoluble complex with the metal salts, conformation of cyclodisarcosyl seems to play an important role in the complex formation. Examination of the molecular model and X-ray analysis suggest that the copper perchlorate complex of the cyclic peptide has a “2:1-sandwich” structure.  相似文献   

7.
Cyclic hexapeptides, cyclo (L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2, in which Acm represents an acetoamide-methyl group, were synthesized, and the conformation and complexation with metal ions were investigated. Cooperation of the carbonyl groups of the Cys(Acm) side chains with those of the cyclic skeleton in complexation was especially examined. Cyclo(L-Leu-L-Phe-L-Pro)2, which possesses no functional groups on side chains, was taken as the reference compound. 13C- and two-dimensional n.m.r. measurements revealed that cyclo(L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 took a C2-symmetric conformation containing cis L-Phe-L-Pro bonds in chloroform and acetonitrile. Both cyclic hexapeptides were found to complex selectively with Ba2+ and Ca2+ in acetonitrile. On complexation the conformation of either cyclic hexapeptide changed into a similar one. However, the binding constant of cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 was higher than that of cyclo(L-Leu-L-Phe-L-Pro)2. The n.m.r. measurements showed that the amide carbonyl groups of Cys(Acm) side chains as well as those of cyclic skeleton in cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 cooperatively bound the cations.  相似文献   

8.
C M Deber  P D Adawadkar 《Biopolymers》1979,18(10):2375-2396
We have synthesized and characterized a series of cation-binding cyclic octapeptides which may function as potential ionophoric substances. The materials contain varying degrees of hydrophobic character, which was controlled systematically through the incorporation of N-alkylglycine residues where N-alkyl = methyl, n-hexyl, cyclohexyl, or n-decyl. The peptides reported include cyclo(Phe-Sar-Gly-Sar)2, cyclo(Glu(OBzl)-Sar-Gly-Sar-Glu(OBzl)-Sar-Gly-(N-decyl)Gly), cyclo(Glu(OBzl)-Sar-Gly-(N-decyl)Gly)2, cyclo(Glu(OBzl)-Sar-Gly-(N-hexyl)Gly)2, cyclo(Glu(OBzl)-Sar-Gly-(N-cyclohexyl)Gly)2, and the corresponding free diacid forms of the Glu-containing compounds. Using 13C- and 1H-nmr spectra, we demonstrated that the mixture of cis/trans peptide bond-isomer conformers, characteristic of the free-peptide benzyl esters in solution, was converted to unique C2-symmetric, presumably all-trans conformers on complexation with calcium ions. Cation-transport experiments, using the thick-liquid model of transport in a Pressman cell, established that these compounds transport a variety of cations and that one peptide examined in detail, cyclo(Glu(OBzl)-Sar-Gly-(N-decyl)Gly)2 (selectivity Ca2+ > Na+ > K+ > Mn2+ > Cu2+ > Mg2+ > Co2+ > Zn2+), transports calcium about an order of magnitude more efficiently than magnesium.  相似文献   

9.
Complex formation of valinomycin with Ba2+ ions was investigated by circular dichroism spectroscopy. The results indicated that Ba2+ forms entirely different types of complexes when compared with K+. The data with perchlorate salt showed evidence for the formation of less stable V2C (peptide sandwich), VC (1:1), and VC2 (ion sandwich) complexes followed by a stable final complex upon gradual addition of salt (V stands for valinomycin and C for the cation). This final complex possibly has a flat structure with no internal hydrogen bonds, similar to that of valinomycin in highly polar solvents. The possible complexation mechanism and the role played by anions and isopropyl side chains are highlighted.  相似文献   

10.
Cyclo(L -Pro-Sar)n (n = 2–4) with moderate flexibility and hydrophobicity of molecular structure was synthesized, and the characteristics of these cyclic peptides and their metal complexes in acetonitrile were investigated in connection with the residual properties using 13C-nmr measurements. The cyclic tetrapeptide cyclo(L -Pro-Sar)2 showed a sterically hindered phenomenon in acetonitrile in which the amide backbone adopted a cis-trans-cis-trans sequence. The cyclic hexapeptide cyclo(L -Pro-Sar)3 existed as a mixture of several conformers whose interconversion is slow on the nmr time scale, including cis-cis-trans and/or cis-trans-trans arrangement of the Sar-Pro bond. Finally, it was demonstrated that the cyclic octapeptide cyclo(L -Pro-Sar)4 behaved as a mixture of multiple conformers which allowed for cis-trans isomerism about the Pro-Sar peptide bond, of which 20–30% had the all-cis Sar-Pro bond isomer and the remaining 70–80% had one (or more) cis Sar-Pro bond isomer. 13C-nmr spectra also demonstrated that cyclo(L -Pro-Sar)n (n = 3,4) formed a 1:1 ion complex whose conformation was characterized by an all-trans peptide bond in the presence of excess metal salt. Cation binding studies, using CD measurements, established that the ion selectivity of cyclo(L -Pro-Sar)4 in acetonitrile decreased in the order, Ba2+ > Ca2+ > Na+ > Mg2+ > Li+.  相似文献   

11.
Based on a proposed solution conformation of the Ca2+ ion complex of the repeat hexapeptide of elastin, l-Val-l-Ala-l-Pro-Gly-l-Val-Gly, it is possible to modify the molecule making it more lipophilic for lipid bilayer permeation while retaining its complexation features. Therefore the two peptides, For-MeVal-Ala-Pro-Sar-Pro-Sar-OMe and For-MeVal-Ala-Pro-Sar-Pro-Sar-OH, were synthesized and evaluated for lipid bilayer activity and cation binding (For, N-formyl; Me, N-methyl; Sar, N-methyl glycine). Both peptides bound Ca2+ preferentially but did not exhibit the properties of a Ca2+ carrier. They were however active as K+ carriers although K+ ion titration curves showed a much lower affinity for K+ than for Ca2+. The addition of Ca2+ or Mg2+ to the bilayer system inhibited the peptide K+ carrier activity. Three possible explanations of this interesting Ca2+ inhibition of carrier activity are irreversible complexation of Ca2+, mixed ligand complex formation involving Ca2+, lipid and peptide, and impermeability of the lipid layer when peptide is complexed with a divalent cation.  相似文献   

12.
The tetra-chelating ligands 1,2-bis[(5H-dibenzo[a,d]cyclohepten-5-yl)phenylphosphanyl]-ethane, bis(troppPh)ethane, and 1,3-bis[(5H-dibenzo[a,d]cyclohepten-5-yl)phenylphosphanyl]-propane, bis(troppPh)propane, were synthesised. For the binding of transition metals, these ligands offer two olefin moieties and two phosphorus centres and form mixtures of diastereomers with a R,S-configuration at the phosphorus centres (meso), or a R,R(S,S)-configuration (rac), respectively. meso/rac-bis(troppPh)ethane was separated by fractional crystallisation and reacted with [Ir(cod)2]OTf (cod=cylcooctadiene, OTf=CF3SO3 −) to give the penta-coordinated complex-cations meso/rac-[Ir(bis(troppPh)ethane)(cod)]+, where the bis(troppPh)ethane serves as tridentate ligand merely. One olefin unit remains non-bonded, however, a slow intra-molecular exchange between this olefin and the coordinated olefin unit was established (meso-[Ir(bis(troppPh)ethane)(cod)]+: k<0.5 s−1; rac-[Ir(bis(troppPh)ethane)(cod)]+: k≈35 s−1). The ligand meso/rac-bis(troppPh)propane reacts with [Ir(cod)2]OTf to give the corresponding complexes containing the tetra-coordinated 16-electron complex-cations meso/rac-[Ir(bis(troppPh)propane)]+. The diastereomers were separated by fractional crystallisation. The complex rac-[Ir(bis(troppPh)propane)]+ is reduced at relatively low potentials (E11/2=−0.95 V, E21/2=−1.33 V versus Ag/AgCl) to give the neutral 17-electron complex [Ir(bis(troppPh)propane)]0 and the 18-electron anionic iridate [Ir(bis(troppPh)propane)], respectively. With acetonitrile, [Ir(bis(troppPh)propane)]+ reacts to give the penta-coordinated complex rac-[Ir(MeCN)(bis(troppPh)propane)]+ (K=45 M−1, kf=6×103 M−1 s−1, kd=1×102 s−1) and with chloride to yield the relatively stable complex rac-[Ir(Cl)(bis(troppPh)propane)] (kd<0.5 s−1). Compared to the rac-isomer, the meso-[Ir(bis(troppPh)propane)]+ shows significantly cathodically shifted reduction potentials (E11/2=−1.25 V, E21/2=−1.64 V versus Ag/AgCl), an acetonitrile complex could not be detected, and the chloro-complex, meso-[Ir(Cl)(bis(troppPh)propane)], is much more labile (kd≈20′000 s−1). meso-[Ir(bis(troppPh)propane)]+ reacts with one equivalent H2 to give the trans-dihydride complex-cation, meso-[Ir(H)2(bis(troppPh)propane)]+, while the rac-isomer, rac-[Ir(bis(troppPh)propane)]+, reacts with two equivalents H2 to give rac-{Ir(H)2(OTf)[(troppPh)(H2troppPh)propane]}, a cis-dihydride complex containing a hydrogenated 10,11-dihydro-5H-dibenzo[a,d]cycloheptene unit, H2troppPh. The triflate anion in this complex is rather firmly bound and dissociates only slowly (k=29 s−1). All differences between the different stereoisomers are attributed to the fact that the ligand backbone in the meso-isomer, meso-[Ir(bis(troppPh)propane)]+, enforces a planar coordination sphere at the metal. On the contrary, already in the tetra-coordinated rac-[Ir(bis(troppPh)propane)]+, the metal has a tetrahedrally distorted coordination sphere which does not impede the reduction to the d9-Ir(0) and d10-Ir(−1) complexes and allows more easily a distortion towards a trigonal bipyramidal (tbp) or octahedral structure for penta- or hexa-coordinated complexes, respectively. A comparison of the NMR data for iridium bonded olefins in equatorial or axial positions in tbp structures shows that the latter experience only modest metal-to-ligand back-donation, while the olefins in the equatorial positions have a high degree of metallacyclopropane character.  相似文献   

13.
Cyclic oxaalkyl diamide of o-phthalic acid (CPhDA) has been obtained and its ability to form complexes with calcium cation has been studied by X-ray, ESI MS, 1H and 13C NMR, FT-IR and PM5 semiempirical methods. The ESI MS measurements have proved that in gas phase the 3:1, 2:1 and 1:1 CPhDA-Ca2+ as well as 3:1 and 2:1 CPhDA-Ca(ClO4)+ complexes are formed. In the solid state a 3:1 complex between CPhDA and calcium perchlorate of the CPhDA-Ca(ClO4)2-H2O (3:1:0.5) stoichiometry crystallises as hemihydrate in centrosymmetric space group (R-3) of the rhombohedral system. In crystal, the central Ca2+ cation is coordinated by the three CPhDA ligands via the carbonyl oxygen atoms in a distorted trigonal antiprism. The cationic [Ca(CPhDA)3]2+ complex exhibits a threefold symmetry. Two [Ca(CPhDA)3]2+ cations related by an inversion centre interact with oxygen atom of water molecule that statistically occupies two positions around the inversion centre along the Ca···Ca axis. The FT-IR spectra show the characteristic changes in the frequencies of the amide I and amide II bands upon complexation. The structures of the CPhDA and its complexes with calcium cation are visualised using DFT and PM5 methods and discussed in detail.  相似文献   

14.
The binding properties of an artificial receptor towards a series of cations including Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Fe2+ and Al3+ in acetonitrile are described. The receptor comprises a photo-responsive pyrene unit connected via a short spacer to a 2,2′:6′,2″-terpyridine metal ion binding site. Interaction of cations with the receptor was monitored by changes in absorption profile and the association constants calculated for 1:1 and 1:2 cation:ligand binding fall within the range log β = 3-12. The receptor is highly fluorescent and quenching of the emission is observed upon cation binding. The potassium picrate transport properties of the membrane-bound receptor are also described. This receptor when immobilised in a polymer support, which separates two aqueous solutions, has been shown to transport potassium ions in the dark with a flux rate of 1.5 × 108 mol/s m2. In contrast, when the membrane-bound receptor is selectively illuminated with light (λ > 400 nm), the flux increases to 2.0 × 108 mol/s m2. The transport efficiency depends on the nature of the trap used in the receiver phase.  相似文献   

15.
S Kimura  E Ozeki  Y Imanishi 《Biopolymers》1989,28(7):1235-1246
Cyclic octapeptides having alternating Sar and hydrophobic amino acid sequences, such as cyclo[Lys(Z)-Sar-Leu-Sar-Leu-Sar-Leu-Sar] (C8KL), cyclo[Glu(OMe)-Sar-Lys(Z)-Sar-Leu-Sar-Leu-Sar] (C8KE, and cyclo[Lys(Suc)-Sar-Leu-Sar-Leu-Sar-Leu-Sar] [C8K(Suc)L, Suc represents succinic acid], were synthesized. These cyclic octapeptides formed a complex selectively with Ca2+. Upon complexation, trans peptide bonds of Sar residues were isomerized to cis peptide bonds. C8KL and C8KE showed very similar characteristics of Ca2+ binding, extraction of Ca2+ from an aqueous solution to a chloroform solution, and Ca2+ transport through a liquid chloroform membrane. C8KL transported Ca2+ across the lipid bilayer membrane above the phase-transition temperature, while C8KE and C8K(Suc)L did not. Therefore, the transport of Ca2+ through the lipid bilayer membrane is very sensitive to the hydrophobicity of the carrier molecule.  相似文献   

16.
The depolarization-activated, high-conductance ``maxi' cation channel in the plasma membrane of rye (Secale cereale L.) roots is permeable to a wide variety of monovalent and divalent cations. The permeation of K+, Na+, Ca2+ and Ba2+ through the pore could be simulated using a model composed of three energy barriers and two ion binding sites (a 3B2S model), which assumed single-file permeation and the possibility of double cation occupancy. The model had an asymmetrical free energy profile. Differences in permeation between cations were attributed primarily to differences in their free energy profiles in the regions of the pore adjacent to the extracellular solution. In particular, the height of the central free energy peak differed between cations, and cations differed in their affinities for ion binding sites. Significant ion repulsion occurred within the pore, and the mouths of the pore had considerable surface charge. The model adequately described the diverse current vs. voltage (I/V) relationships obtained over a wide variety of experimental conditions. It described the phenomena of non-Michaelian unitary conductance vs. activity relationships for K+, Na+ and Ca2+, differences in selectivity sequences obtained from measurements of conductance and permeability ratios, changes in relative cation permeabilities with solution composition, and the complex effects of Ba2+ and Ca2+ on K+ currents through the channel. The model enabled the prediction of unitary currents and ion fluxes through the maxi cation channel under physiological conditions. It could be used, in combination with data on the kinetics of the channel, as input to electrocoupling models allowing the relationships between membrane voltage, Ca2+ influx and Ca2+ signaling to be studied theoretically. Received: 29 April 1998/Revised: 20 November 1998  相似文献   

17.
《Inorganica chimica acta》1987,138(3):187-192
The thermodynamic parameters (ΔG, ΔH, ΔS) of complexation have been measured by potentiometric and calorimetric titration for formation of ML and MHL (M  Mg2+, Ca2+; L  AMP2−, ADP3−, ATP4−). The parameters are interpreted to support a model of inner sphere complexation of the metal cations to the phosphate groups with no evidence of metal-ring interaction in the ML complexes. In the MHL complexes, the protonation (of a ring nitrogen) seemingly leads to ‘backfolding’ interaction between the metal and the ring system in addition to the interaction between the metal and the phosphate groups.  相似文献   

18.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

19.
Electrophysiological studies have established that the permeation of Ba2+ ions through the KcsA K+-channel is impeded by the presence of K+ ions in the external solution, while no effect is observed for external Na+ ions. This Ba2+ “lock-in” effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically selective for K+. We used molecular dynamics simulations to interpret these lock-in experiments in the context of the crystallographic structure of KcsA. Assuming that the Ba2+ is bound in site S2 in the dominant blocked state, we examine the conditions that could impede its translocation and cause the observed “lock-in” effect. Although the binding of a K+ ion to site S1 when site S2 is occupied by Ba2+ is prohibitively high in energy (>10 kcal/mol), binding to site S0 appears to be more plausible (ΔG > 4 kcal/mol). The 2D potential of mean force (PMF) for the simultaneous translocation of Ba2+ from site S2 to site S1 and of a K+ ion on the extracellular side shows a barrier that is consistent with the concept of external lock-in. The barrier opposing the movement of Ba2+ is very high when a cation is in site S0, and considerably smaller when the site is unoccupied. Furthermore, free energy perturbation calculations show that site S0 is selective for K+ by 1.8 kcal/mol when S2 is occupied by Ba2+. However, the same site S0 is nonselective when site S2 is occupied by K+, which shows that the presence of Ba2+ affects the selectivity of the pore. A theoretical framework within classical rate theory is presented to incorporate the concentration dependence of the external ions on the lock-in effect.  相似文献   

20.
《Inorganica chimica acta》1988,144(2):269-273
Lanthanoid nitrates react with 1,7,10,16-tetraoxa- 4,13-diaza-N,N′-dimethylcyclooctadecane, Me2(2,2), to give complexes with two different metal:ligand ratios, 1:1 (Ln = La, Ce, Tb) and 4:3 (Ln = Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho). The complexes were isolated from anhydrous solutions in acetonitrile and characterized by elemental analysis, X-ray diffraction, magnetic susceptibility measurements and vibrational analysis.The La and Ce 1:1 complexes are non-ionic and probably 12-coordinated, with the metal ion bound to the six donor atoms of the ligand and to three bidentate nitrate ions. The 4:3 complexes are ionic; they contain three bis(nitrato) complex cations [Ln(NO3)2·Me2(2,2)]+ and one hexakis(nitrato) anion [Ln(NO3)6]3−. Spectroscopic data, including luminescence spectra, point to the 1:1 Tb-complex as being a 4:3 complex with an additional outer-sphere coordinated molecule of ligand.In solution, the 1:1 complexes remain essentially non-ionic, although some dissociation cannot be ruled out, whereas the 4:3 complexes behave as 2:1 (of even 3:1) electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号