首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.  相似文献   

3.
Changes in the composition of the extensible cuticle through the 5th larval instar of Rhodnius prolixus were measured and related to the physiological and developmental state of the larva. Particular attention was paid to the extractable proteins and their characteristics are related to the plasticisation and stretch of the cuticle during the feeding process.There are eight major soluble proteins in the cuticle; three are acidic and five are basic. A model of the cuticle structure held together by ionic and hydrophobic interactions between the constituents is proposed. Polymorphism as a reason for the large number of proteins in ‘soft’ cuticles is refuted on the evidence available.A novel type of transitory cuticle is formed after the feeding of larvae. The role of this cuticle is discussed and a multiple function proposed for it.  相似文献   

4.
This paper emphasizes the importance of the protein component of cuticles. Correlation of electrophoretic charge distribution of individual cuticular proteins and physical properties of the cuticles from which they were extracted, as well as interpopulation and interspecies conservation of electrophoretic patterns, are used to argue that individual proteins play precise roles in the cuticle. Glycosylation of cuticular proteins is described, but no function for these modifications is yet known. Analogy is drawn to analyses of chorion proteins and the case is made that analysis of amino acid sequence data is likely to provide insights into how cuticular proteins and chitin interact to construct the diverse types of cuticles.  相似文献   

5.
Acid hydrolysates of cuticle from various insect species were quantitatively analyzed for five catecholic amino acid adducts. Four of the adducts are ketocatechols; in three of them the amino acid moiety, either lysine, glycine or beta-alanine, is connected via its amino group to the alpha-carbon atom of 3,4-dihydroxyacetophenone, in the fourth a tyrosine residue is connected to the same position via its phenolic group. The fifth adduct contains histidine linked via its imidazole-ring to the beta-position of the dopamine sidechain. The three ketocatecholic adducts containing alpha-amino acids were obtained in significant yields from adult cuticles of the locust Schistocerca gregaria, the cockroaches Blaberus craniifer and Periplaneta americana, and the beetles Pachynoda sinuata and Tenebrio molitor, but only in trace amounts from larval and pupal cuticles of T. molitor, pupal cuticles of the moths Manduca sexta and Hyalophora cecropia, and puparia of the blowfly Calliphora vicina. The beta-alanine-containing ketocatechol was not obtained from cuticle of locusts and T. molitor larvae and pupae, but it was present in the hydrolysates of the other cuticles. The beta-histidine-dopamine adduct was obtained from all the cuticles, the highest yield was obtained from adult P. sinuata and the lowest yield was from adult S. gregaria. The beta-histidine-dopamine adduct is derived from the product formed by reaction of p-quinone methides of N-acetyldopamine (NADA) or N-beta-alanyldopamine (NBAD) with histidine residues in the cuticular proteins. The ketocatecholic adducts are assumed to be degradation products of crosslinks formed when oxidized dehydro-NADA reacts with the cuticular proteins. The insect species investigated appear to use both pathways for sclerotization, but to widely differing extents; the dehydro-NADA pathway dominates in cuticles which are exposed to strong deforming forces, such as those of adult locusts and cockroaches, and the p-quinone methide pathway dominates in cuticle of lepidopteran pupae and blowfly puparia, which are not exposed to strong mechanical forces but have to be effectively protected against microbial and fungal attacks.  相似文献   

6.
The cuticle of the free-living nematode Caenorhabditis elegans is a proteinaceous extracellular structure that is replaced at each of four postembryonic molts by the underlying hypodermis. The cuticles of the adult and three juvenile stages (L1, Dauer larva, L4) have been compared ultrastructurally and biochemically. Each cuticle has an annulated surface and comprises two main layers, an inner basal layer and an outer cortical layer. The adult cuticle has an additional clear layer which separates the basal and cortical layers and is traversed by regularly arranged columns of electron-dense material. The fine structure of the cortical layer is similar in cuticles from different stages while that of the basal layer is stage specific. Purified cuticles were obtained by sonication and treatment with sodium dodecyl sulfate (SDS) and their component proteins solubilized with a sulfhydryl reducing agent. The degree of cuticle solubility is stage specific and the insoluble structures for each cuticle were localized by electron microscopy. Analysis of 35S-labeled soluble cuticle proteins by SDS-polyacrylamide gel electrophoresis yields unique banding patterns for each stage. Most proteins are of high molecular weight (100–200 K) and are restricted to particular stages. Sixteen of the nineteen major proteins characterized are specifically degraded by bacterial collagenase. The results indicate that the different molts are not reiterative, but require the integration of both unique and shared gene functions. The potential use of stage-specific cuticle differences to identify and characterize regulatory genes controlling cuticle-type switching during development is discussed.  相似文献   

7.
The abdominal cuticles of Rhodnius prolixus (fifth instar) and Boophilus microplus (adult female) expand dramatically and rapidly during feeding. In the unfed stage of both species the epicuticle of the abdomen is deeply folded, and when rapid stretching takes place the epicuticle unfolds and the underlying procuticle stretches so that the thickness of the cuticle is halved. The cuticles contained only trace amounts of protein soluble in water and aqueous KCl but substantial quantities were extracted with 7 M aqueous urea. The proteins were analysed for their amino acid composition and investigated by gel electrophoresis and isoelectric focusing.In solubility, amino acid composition, molecular weight distribution, and isoelectric points, the proteins isolated from both species resembled one another closely. They had higher molecular weights and higher isoelectric points than did the proteins from flexible, non-stretching cuticles and unlike them had high alanine and histidine and low aspartic acid and glutamic acid contents. Their amino acid composition was very similar to that of the whole cuticle. The proteins were not associated with neutral sugars. Both the Rhodnius and Boophilus cuticles had low chitin contents, 11·2 and 3·8% respectively (on a water-free basis). The composition of the cuticles and the properties of the proteins are discussed in relation to the stretching which they undergo.  相似文献   

8.
Proteins were extracted from the cuticle of mid-instar nymphs of locusts, Locusta migratoria, and cockroaches, Blaberus craniifer. Seven proteins were purified from the locust extract and five from the cockroach extract, and their amino acid sequences were determined. Polyacrylamide gel electrophoresis indicates that the proteins are present only in the post-ecdysially deposited layer of the nymphal cuticles. One of the locust and one of the cockroach nymphal proteins contain a 68-residue motif, the RR-2 sequence, which has been reported for several proteins from the solid cuticles of other insect species. Two of the cockroach proteins contain a 75-residue motif, which is also present in a protein from the larval/pupal cuticle of a beetle, Tenebrio molitor, and in proteins from the exoskeletons of a lobster, Homarus americanus, and a spider, Araneus diadematus. The motif contains a variant of the Rebers-Riddiford consensus sequence, and is called the RR-3 motif. One of the locust and three of the cockroach post-ecdysial proteins contain one or more copies of an 18-residue motif, previously reported in a protein from Bombyx mori pupal cuticle. The nymphal post-ecdysial proteins from both species have features in common with pre-ecdysial proteins (pharate proteins) in cuticles destined to be sclerotised; they show little similarity to the post-ecdysial cuticular proteins from adult locusts or to proteins from soft, pliable cuticles. Possible roles for post-ecdysial cuticular proteins are discussed in relation to the reported structures.  相似文献   

9.
The cuticle proteins of Drosophila melanogaster: stage specificity   总被引:2,自引:0,他引:2  
Five stage-specific cuticles are produced during the development of Drosophila. Urea-soluble proteins were extracted from each developmental stage and compared by gel electrophoresis. Proteins from first and second instar cuticle are identical except for minor differences in two proteins. Each subsequent stage, third instar, pupa, and adult, has a unique set of cuticle proteins. Qualitative changes within stages are seen in proteins from third instar and adult cuticle. Third instar cuticle proteins can be divided into “early” [proteins 2a, 3, 4, 5, 7, and 8] and “late” [proteins 2 and 1] groups. Adult cuticle proteins change in relative amounts during pharate adult development and change mobility at eclosion. The lower abdominal pupal cuticle lacks a protein found in the pupal cuticle covering the head and thorax. Cuticle proteins from each stage are immunologically related. Nonetheless, electrophoretic variants of three larval proteins do not affect any major changes in the electrophoretic mobility of proteins from other stages. We propose that each stage (except first and second instar) has proteins encoded by discrete genes.  相似文献   

10.
Two mechanisms to account for the stiffening of cuticle at tanning were proposed in 1940. The quinone tanning theory has been almost universally accepted; that of dehydration almost universally neglected. Calculations and tests on the mechanical properties of cuticle under differing conditions suggest that covalent cross-linking, even if it exists, is insufficient to account for the degree of stiffening of cuticle at sclerotisation. Dehydration will induce sufficient secondary bonds to account for the stiffness and insolubility of ‘tanned’ cuticle in the complete absence of covalent cross-links. It is suggested that the mechanism of sclerotisation is driven by quinones and other chemicals which are secreted into the cuticle at sclerotisation and cause highly controlled dehydration. Covalent cross-linking may still occur, but must be considered to be of secondary importance and unproven in all cuticles other than resilin.  相似文献   

11.
Earlier studies demonstrated that Metarhizium brunneum, usually a broad-host pathogen of arthropods, is unable to complete its pathogenic life cycle when inoculated on the fungus-resistant tick, Hyalomma excavatum engorged females. While the fungus penetrates the cuticle of fungus-susceptible tick, Rhipicephalus annulatus females, it is unable to penetrate the cuticle of fungus-resistant tick, and even perishes on its surface. This is probably due to high concentration of antifungal fatty acids and probably also due to a hypersensitive-like response of the tick. To understand the metabolic pathways occurring in the fungal hyphae upon encountering the cuticles, we compared the response of the fungus to cuticle from susceptible and resistant tick cuticles by 2D-gels. The intracellular proteomes of M. brunneum Mb7 exposed to cuticle of the fungus-susceptible tick, R. annulatus, and to the fungus-resistant tick, H. excavatum engorged females were compared after exposure to either cuticles. By means of liquid chromatography-mass spectrometry/mass spectrometry we identified in both proteomes common proteins involved in biological processes as well as unique proteins identified only in the proteome of fungus exposed to fungus-resistant tick cuticle. These proteins were identified in high probability as heat shock proteins, four key enzymes of the glyoxylate cycle, and proteins associated with hypoxia, and exposure to antifungal drugs. These findings are discussed within the M. brunneum-tick pathosystem in relation to tick resistance and host resistance in general.  相似文献   

12.
A total of six proteins from the abdominal arthrodial membrane (intersegmental membrane) of the lobster, Homarus americanus, were purified and their amino acid sequences were determined by a combination of mass spectrometry and Edman degradation. The proteins are acidic with pI-values close to 4 and they all have molecular masses approximately 12 kDa. The sequences of five of the proteins differ in only a few residues, while the sixth protein differs from the others in more than half of the positions. Only little similarity is observed between the sequences of the arthrodial membrane proteins and those of proteins purified from the calcified parts of the exoskeleton of H. americanus. The arthrodial membrane proteins contain the Rebers-Riddiford consensus sequence common in proteins from insect cuticles. Comparison of the complete sequences to the sequences available in databases shows that the lobster membrane proteins are more closely related to proteins from insect pliant cuticles than to proteins derived from cuticles destined for sclerotization. Characteristic features in the protein sequences are discussed, and it is suggested that the various sequence regions have specific roles in determining the mechanical properties of arthrodial membranes.  相似文献   

13.
The largest arthropod cuticular protein family, CPR, has the Rebers and Riddiford (R&R) Consensus that in an extended form confers chitin-binding properties. Two forms of the Consensus, RR-1 and RR-2, have been recognized and initial data suggested that the RR-1 and RR-2 proteins were present in different regions within the cuticle itself. Thus, RR-2 proteins would contribute to exocuticle that becomes sclerotized, while RR-1s would be found in endocuticle that remains soft. An alternative, and more common, suggestion is that RR-1 proteins are used for soft, flexible cuticles such as intersegmental membranes, while RR-2s are associated with hard cuticle such as sclerites and head capsules. We used TEM immunogold detection to localize the position of several RR-1 and RR-2 proteins in the cuticle of Anopheles gambiae. RR-1s were localized in the procuticle of the soft intersegmental membrane except for one protein found in the endocuticle of hard cuticle. RR-2s were consistently found in hard cuticle and not in flexible cuticle. All RR-2 antibodies localized to the exocuticle and four out of six were also found in the endocuticle. Hence the location of RR-1s and RR-2s depends more on properties of individual proteins than on either hypothesis.  相似文献   

14.
Composition and spatial distribution of organic and inorganic materials within the cuticle of isopods vary between species. These variations are related to the behaviour and habitat of the animal. The troglobiotic isopod Titanethes albus lives in the complete darkness of caves in the Slovenian Karst. This habitat provides constant temperature and saturated humidity throughout the year and inconsistent food supply. These conditions should have lead to functional adaptations of arthropod cuticles. However, studies on structure and composition of cave arthropod cuticles are rare and lacking for terrestrial isopods. We therefore analysed the tergite cuticle of T. albus using transmission and field-emission electron microscopy, confocal μ-Raman spectroscopic imaging, quantitative X-ray diffractometry, thermogravimetric analysis and atomic absorption spectroscopy. The ultrastructure of the epicuticle suggests a poor resistance against water loss. A weak interconnection between the organic and mineral phase within the endo- and exocuticle, a comparatively thin apical calcite layer, and almost lack of magnesium within the calcite crystal lattice suggest that the mechanical strength of the cuticle is low in the cave isopod. This may possibly be of advantage in maintaining high cuticle flexibility and reducing metabolic expenditures.  相似文献   

15.
Cuticle proteins of an insect pest, the Medfly Ceratitis capitata, were resolved in polyacrylamide gels and partially characterized. The pupal cuticle was found to be different from cuticles of other insects since more than 80% w/w of the protein is a single mannose-containing polypeptide (PCG-100). The temporally-regulated in vivo biosynthesis and deposition of cuticle proteins was studied by microinjection of [35S]methionine followed by hand dissection of pupal cuticles. The major pupal glycoprotein, PCG-100, is cuticle- and stage-specific and was the earliest to be labeled and deposited. Its synthesis was maximal at around 46 hours after pupariation and then it decreased. The deposited PCG-100 and other minor pupal cuticle proteins become non-extractable at the end of the instar (7 days after pupariation) probably by sclerotization phenomena. These results provide insight into the temporal control of gene expression programs involved in cuticle deposition during medfly metamorphosis.  相似文献   

16.
Cuticle thickness of leaves varies >?100 times across species, yet its dry mass cost and ecological benefits are poorly understood. It has been repeatedly demonstrated that thicker cuticle is not superior as a water barrier, implying that other functions must be important. Here, we measured the mechanical properties, dry mass and density of isolated cuticle from 13 evergreen woody species of Australian forests. Summed adaxial and abaxial cuticle membrane mass per unit leaf area (CMA) varied from 2.95 to 27.4?g m(-2) across species, and accounted for 6.7-24% of lamina dry mass. Density of cuticle varied only from 1.04 to 1.24?g?cm(-3) ; thus variation in CMA was mostly due to variation in cuticle thickness. Thicker cuticle was more resistant to tearing. Tensile strength and modulus of elasticity of cuticle were much higher than those of leaf laminas, with significant differences between adaxial and abaxial cuticles. While cuticle membranes were thin, they could account for a significant fraction of leaf dry mass due to their high density. The substantial cost of thicker cuticle is probably offset by increased mechanical resistance which might confer longer leaf lifespans among evergreen species.  相似文献   

17.
Cuticles isolated from second-stage juveniles and adult females of Meloidogyne incognita were purified by treatment with 1% sodium dodecyl sulfate (SDS). The juvenile cuticle was composed of three zones differing in their solubility in β-mercaptoethanol (BME). Proteins in the cortical and median zones were partially soluble in BME, whereas the basal zone was the least soluble. The BME-soluble proteins from the juvenile cuticle were separated into 12 bands by SDS-polyacrylamide gel electrophoresis and characterized as collagenous proteins based on their sensitivity to collagenase and amino acid composition. The adult cuticle consisted of two zones which were dissolved extensively by BME. The basal zone was completely solubilized, leaving behind a network of fibers corresponding to the cortical zone. The BME-soluble proteins from the adult cuticle were separated by electrophoresis into nine bands one of which constituted > 55% of the total BME-soluble proteins. All bands were characterized as collagenous proteins. Collagenous proteins from juvenile cuticles also contained glycoproteins which were absent from the adult cuticles.  相似文献   

18.
《Biophysical journal》2022,121(4):515-524
Changes in biomechanical properties have profound impacts on human health. C. elegans might serve as a model for studying the molecular genetics of mammalian tissue decline. Previously, we found that collagens are required for insulin signaling mutants' long lifespan and that overexpression of specific collagens extends wild-type lifespan. However, whether these effects on lifespan are due to mechanical changes during aging has not yet been established. Here, we have developed two novel methods to study the cuticle: we measure mechanical properties of live animals using osmotic shock, and we directly perform the tensile test on isolated cuticles using microfluidic technology. Using these tools, we find that the cuticle, not the muscle, is responsible for changes in the “stretchiness” of C. elegans, and that cuticle stiffness is highly nonlinear and anisotropic. We also found that collagen mutations alter the integrity of the cuticle by significantly changing the elasticity. In addition, aging stiffens the cuticle under mechanical loads beyond the cuticle's healthy stretched state. Measurements of elasticity showed that long-lived daf-2 mutants were considerably better at preventing progressive mechanical changes with age. These tests of C. elegans biophysical properties suggest that the cuticle is responsible for their resilience.  相似文献   

19.
A total of six proteins from the abdominal arthrodial membrane (intersegmental membrane) of the lobster, Homarus americanus, were purified and their amino acid sequences were determined by a combination of mass spectrometry and Edman degradation. The proteins are acidic with pI-values close to 4 and they all have molecular masses ≈12 kDa. The sequences of five of the proteins differ in only a few residues, while the sixth protein differs from the others in more than half of the positions. Only little similarity is observed between the sequences of the arthrodial membrane proteins and those of proteins purified from the calcified parts of the exoskeleton of H. americanus. The arthrodial membrane proteins contain the Rebers-Riddiford consensus sequence common in proteins from insect cuticles. Comparison of the complete sequences to the sequences available in databases shows that the lobster membrane proteins are more closely related to proteins from insect pliant cuticles than to proteins derived from cuticles destined for sclerotization. Characteristic features in the protein sequences are discussed, and it is suggested that the various sequence regions have specific roles in determining the mechanical properties of arthrodial membranes.  相似文献   

20.
植物角质层生物学特性及水分渗透性研究进展   总被引:1,自引:0,他引:1  
植物角质层作为植物体与外界环境的第一道保护屏障, 其最主要的功能是防止植物体过度失水。揭示植物角质层的生物学功能及其原理将为现代农业的发展以及仿生材料的开发应用提供科学指导。该文综述了植物角质层的生物学特性及其与水分渗透性关系的研究进展, 并展望了角质层水分渗透研究的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号