首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The ability of metal ions to cause physical aggregation of neutral solutions of bovine fibrinogen has been studied. Three categories were found: (a) ions (such as Ca2+, Mg2+ and Mn2+) which did not cause aggregation even when present in 1–100 mm concentrations: (b) ions (such as Fe2+, Cu2+ and Ni2+) which caused aggregation in the 0–10 mm concentration range, (c) ions (such as Hg2+, Zn2+, Cr3+, La3+) which caused aggregation in the 0–1000 μm concentration range. Aggregation occurs immediately the metal ion is brought into contact with the fibrinogen, and product formation reaches a steady state within 5 min. With the exception of Zn2+, all the ions that caused aggregation exhibited a threshold concentration below which no observable aggregation took place. The threshold concentration for Hg2+, the most effective ion studied, was 6 μm. Addition of excess EDTA caused resolubilization of the aggregated fibrinogen due to removal of the metal ions. Aggregation is thus thought to be a physical process initiated by binding of metal ions to those carboxyl groups in fibrinogen responsible for keeping the monomers apart in solution. The aggregation does not involve prior proteolytic degradation of the fibrinogen.  相似文献   

2.
Abstract

Chemical speciation of ternary complexes of Ca(II), Mg(II) and Zn(II) ions with L-histidine as the primary ligand (L) and L-glutamic acid as the secondary ligand (X) has been studied pH metrically in the concentration range of 0.0-60.0% v/v DMSO-water mixtures maintaining an ionic strength of 0.16 mol L-1 using sodium chloride at 303.0 K. Titrations were carried out in different relative concentrations (M:L:X = 1.0:2.5:2.5, 1.0:2.5:5.0, 1.0:5.0:2.5) of metal (M) to L-histidine to L-glutamic acid with sodium hydroxide. Stability constants of ternary complexes were refined with MINIQUAD75. The best-fit chemical models were selected based on statistical parameters and residual analysis. The predominant species detected for Ca(II), Mg(II) and Zn(II) are ML2XH2, MLXH2 and MLX2. Extra stability of ternary complexes compared to their binary complexes was explained to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of DMSO and the plausible equilibria for the formation of species are discussed.  相似文献   

3.
Hydrogenase-constitutive (Hupc) mutants of Bradyrhizobium japonicum were previously shown to accumulate more nickel than the wild-type strain. In a 2 h period Hupc strains JH101 and JH103 also accumulated 2- to 3-fold more Mg2+, Zn2+ and Cu2+, and about 4-fold more Co2+ and Mn2+ than the wild-type strain JH. Init uptake rates (first 10 min) by the Hupc strains were also greater for all the metals. The mutation in the Hupc strains affecting a trans-acting regulator of the hup structural genes appears to have also amplified a metal uptake/accumulation process common to many divalent metal ions. From efflux experiments (suspension of cells in metal-free medium after metal accumulation) to determine the degree of dissociation of each metal with the cells it was concluded that Zn2+, like Ni2+, was rapidly and tightly cell-associated. In contrast, about 50% of the accumulated Cu2+ and about 30% of the Mn2+ was effluxed within 2 h by both the Hupc and wild-type strains. Cobalt was more tightly cell-associated than Mn2+ or Cu2+, as the strains effluxed about 26% of the previously accumulated metal in 2 h. Even after accounting for effluxed metal, the Hupc strains retained more of each metal than the wild-type. The increased metal accumulation by Hupc strains could not be accounted for solely at the level of transport, as known metabolic inhibitors (carbonyl cyanide m-chlorophenylhydrazone and nigericin) of nickel transport partially inhibited (1 h) accumulation of only some (magnesium, zinc and copper) of the other metals. Hydrogenase-derepressed wild-type cells exhibited slightly higher (22–27% more) 2 h accumulation capacity for some of the metals (nickel, zinc and copper) than did non-derepressed cells, but not to the 2- to 4-fold greater level observed for Hupc strains compared with the wild-type. The Hupc strains JH101 and JH103 do not synthesize more capsular/cell wall carbohydrate than the wild-type strain.  相似文献   

4.
Li SJ 《Biopolymers》2006,81(2):74-80
Metal binding to lysozyme has received wide interest. In particular, it is interesting that Ni2+, Mn2+, Co2+, and Yb3+ chloride salts induce an increase in the solubility of the tetragonal form in crystals of hen egg white lysozyme at high salt concentration, but that Mg2+ and Ca2+ chloride salts do not. To investigate the interactions of the di- and trivalent metal ions with the active site of lysozyme and compare the effects of the di- and trivalent metal ions on molecular conformation of lysozyme based on the structural analysis, the crystal structures of hen egg white lysozyme grown at pH 4.6, in the presence of 0.5 M MgCl2, CaCl2, NiCl2, MnCl2, CoCl2, and YbCl3, have been determined by X-ray crystallography at 1.58 A resolution. The crystals grown in these salts have an identical space group, P4(3)2(1)2. The molecules show no conformational changes, irrespective of the salts used. Ni2+ and Co2+ binding to the Odelta atom of Asp52 in the active site at 1.98 and 2.02 A, respectively, and Yb3+ binding to both the Odelta atom of Asp52 and the Odelta1 atom of Asn46 at 2.25 A have been identified. The binding sites of Mn2+, Mg2+, and Ca2+ have not been found from different Fourier electron density maps. The Ni2+ and Co2+ ions bind to the Odelta atom of Asp52 at almost the same position, while the Yb3+ ion takes a different position from the Ni2+ and Co2+ ions. On the other hand, the anion Cl-, interacting with the Oeta atom of Tyr23 at a site of about 2.90 A, has also been determined for each crystal.  相似文献   

5.
E N Chikvaidze 《Biofizika》1988,33(4):723-725
ESR study was carried out of the interaction between Zn2+, Cu2+, Ca2+, Mg2+ ions and human serum albumin (HSA) in the presence of Mn2+ ions which depends on pH. Competitive binding of these ions with "manganese-binding" sites of albumin was shown to depend on pH. An analysis of concentration dependence of binding these ions with human serum albumin confirmed earlier supposition about the nature of the binding sites of Mn2+ ions with HSA.  相似文献   

6.
Upon refluxing 2:1 mixtures of adenine (adH) and divalent 3d metal chloride hydrates in a 7:3 (v/v) mixture of ethanol-triethyl orthoformate for several days, partial substitution of ad? for Cl? ligands occurs, and solid complexes of the M(ad)Cl· 2H20 (M = Mn, Zn), Fe2(ad)(adH)2Cl3·2H2O, M(ad)- (adH)Cl·H2O (M = Co, Cu) and Ni2(ad)3Cl·6H2O types are eventually isolated [1]. It is probably of interest that during analogous previous synthetic work, involving interaction of ligand and salt in refluxing ethanol, no substitution reactions between Cl? and ad? took place, and MCl2 adducts with neutral adH were reportedly obtained. Characterization studies suggest that the new complexes reported are linear chainlike polymeric species, involving single adenine bridges between adjacent M2+ ions. Terminal chloro, adenine and aqua ligands complete the coordination around each metal ion. The new Ni2+ complex is hexacoordinated, whilst the rest of the complexes are pentacoordinated. Most likely binding sites are considered to be N(9) for terminal unidentate and N(7), N(9) for bridging bidentate adenine [1].  相似文献   

7.
The interaction between the native DNA macromolecules and Ca2+, Mn2+, Cu2+ ions in solutions of low ionic strength (10(-3) M Na+) is studied using the methods of differential UV spectroscopy and CD spectroscopy. It is shown that the transition metal ions Mn2+ exercise binding to the nitrogen bases of DNA at concentrations approximately 5 x 10(-6) M and form chelates with guanine of N7-Me(2+)-O6 type. Only at high concentrations in solution (5 x 10(-3) M) do Ca2+ ions interact with the nitrogen bases of native DNA. In the process of binding to Ca2+ and Mn2+ the DNA conformation experiences some changes under which the secondary structure of the biopolymer is within the B-form family. The DNA transition to the new conformation is revealed by its binding to Cu2+ ions.  相似文献   

8.
Phosphorylation of the peptide LRRASLG by the catalytic subunit of cAMP-dependent protein kinase was measured in the presence of various divalent metals to establish the role of electrophiles in the kinetic mechanism. Under conditions of low or high metal concentrations, the apparent second-order rate constant, kcat/Kpeptide, and the maximal rate constant, kcat, followed the trend Mg2+ > Co2+ > Mn2+. Competitive inhibition studies indicate that the former effect is not due to destabilization of the substrate complex, E.ATP.S. The effects of solvent viscosity on the steady-state kinetic parameters were interpreted according to a simple mechanism involving substrate binding, phosphotransfer, and product release steps and two metal chelation sites in the nucleotide pocket. Decreases in kcat and kcat/Kpeptide result mostly from attenuations in the dissociation rate constant for ADP and the association rate constant for the substrate, respectively. Decreases in the phosphoryl transfer rate constant have only negligible to moderate effects on these parameters. The low observed values for the association rate constant of the substrate indicate that the metals control the concentration of the productive binary form, Ea.ATP, and indirectly the accessibility of the active site. By comparison, Mg2+ is the best divalent metal catalyst because it uniformly lowers the transition state energies for all steps in the kinetic mechanism, permitting maximum flux of substrate to product. The data suggest that cAMP-dependent protein kinase uses metal ions to serve multiple roles in facilitating phosphotransfer and accelerating substrate association and product dissociation.  相似文献   

9.
10.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

11.
The mode of interaction of ataxin-3 Q36 (AT-3 Q36) with selected endogenous and exogenous metal ions, namely, Zn2+, Cu2+, Ni2+, and Cd2+, was examined. Metal-ion-induced structural changes of the protein were monitored by fluorescence as well as Fourier transform Raman spectroscopy. We found that the cations tested lead to a decrease in α-helical content and a concurrent increase in β-sheet as well as undefined (β-turn and random-coil) structures. The most evident effect was observed for copper and nickel cations. After titration with these cations, the AT3 Q36 secondary structure content (27% α-helices in the presence of either ion, 31 and 27% β-sheets for Cu2+ and Ni2+, respectively) was similar to that observed for the aggregated form of the protein (27% α-helices, 36% β-sheets). Using the 1-anilinonaphthalene-8-sulfonate hydrophobic fluorescence probe, we showed that the presence of the metal ions tested led to the formation of solvent-exposed hydrophobic patches of AT-3 Q36, and that such an effect decreased with increasing ionic radius.  相似文献   

12.
Summary Polymerization of various nucleoside-5-phosphorimidazolides has been conducted in neutral aqueous solution using divalent metal ions as catalysts. Oligonucleotide formation took place from each of the ribonucleoside-5-phosphorimidazolides, ImpC, ImpU, ImpA, ImpG, and ImpI. The yields and distributions of the resulting oligonucleotides varied depending on the difference of the nucleic acid base and the metal ions used. The catalytic effect of divalent metal ions on the formation of oligocytidylates occurred in the following order: Pb2+>Zn2+>Co2+, Mn2+>Cd2+>Cu2+>Ni2+>Ca2+, Mg2+, none >Hg2+. The order changes slightly for other types of oligoribonucleotide formation. Oligoribonucleotides up to hexamers were obtained in 35–55% overall yield, when Pb2+ ion was used as a catalyst. Zn2+ ions yielded oligoribonucleotides up to tetramers in 10–20% overall yield. The resulting oligonucleotides contained mainly 2–5 internucleotide linkages.Little or no oligonucleotide was obtained from nucleoside-5-phosphorimidazolides modified in the sugars, Imp(3-dA), Imp(2-dA), Imp(Ara), Imp(Aris), and Imp(Nep). The results indicate that a ribosyl system is required for the metal ion-catalyzed synthesis of oligonucleotides. Abbreviations. EDTA, ethylenediaminetetraacetic acid; Versenol,N-hydroxyethylethylenediaminetriacetic acid; Tris, tris-(hydroxymethyl)aminomethane; pN (N is A, C, G, U, I, 3-dA, 2-dA, AraA, Aris, or Nep), nucleoside-5-phosphate; Np, nucleoside-2(3)-phosphate; I, inosine; 3-dA, 3-deoxyadenosine; 2-dA, 2-deoxyadenosine; AraA, arabinosyladenine; Aris, aristeromycin; Nep, neplanocin A; ImpN, nucleoside-5-phosphorimidazolide; NppN, P1,P2-dinucleoside-5,5-pyrophosphate; (pN)n (n=2, 3, ...), oligomers of pN, numbers given between a nucleoside and a phosphate indicate the type of internucleotide linkage, e.g., pC2 p5C is 5-phosphorylcytidyl-(2–5)-cytidine; , cyclic dimers of pN; BAP, bacterial alkaline phosphatase; N.Pl, nuclease Pl; VPDase, venom phosphodiesterase; HPLC, high pressure liquid chromatography  相似文献   

13.
The selective removal of impurity proteins and colloidal particles from milk prior to chromatographic purification processes presents a crucial issue in the production of therapeutic proteins from transgenic animals with high recovery yield and purity. We have developed an efficient two-step precipitation method for the recovery of the recombinant human erythropoietin (rhEPO) of interest from transgenic sow milk. Here, rhEPO was partially purified from transgenic sow milk via a two-step precipitation method consisting of ammonium sulfate and divalent metal precipitations, with a yield of approximately 82.1% and a purification fold of 10.4 at a copper concentration of 30 mM. Copper proved to be the strongest flocculating agent among the divalent ions tested for the aggregation of milk proteins under 35%, with ammonium sulfate, zinc, nickel, and calcium demonstrating increasing flocculating capability in the given order. Copper and zinc proved to be appropriate divalent metals for the recovery of rhEPO at high yield and purity, and the optimal concentration ranges of copper and zinc were 20~40 and 40~80 mM, respectively.  相似文献   

14.
The effect of several metal ions on NADP+-malic enzyme (EC 1.1.1.40) purified from Zea mays L. leaves was studied Mg2+, Mn2+, Co2+ and Cd2+ were all active metal cofactors. The malic enzyme from maize has a moderately high intrinsic preference for Mn2+ relative to Mg2+ at pH 7.0 and 8.0 Negative cooperativity detected in the binding of Mg2+ at pH 7.0 and 8.0 and in the binding of Mn2+ at pH 7.0 suggests the existence of at least two binding sites with different affinity. All of the activating metal ions have preference for octahedral coordination geometry and have ionic radii of 0.86–1.09 Å. The ions that act as inhibitors are outside this range and/or are incapable of octahedral coordination. Ba2+, Sr2+, Cd2+, Ca2+, Be2+, Ni2+, Cu2+, Zn2+, Co2+, Hg2+ showed mixed-type inhibition. The reciprocal of their K1 values follow the order of their apparence in the Irving-Williams series of stability that derives in part from size effects. It is suggested that the size of the ions may play a partial role in determining the strength of the metal interaction.  相似文献   

15.
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron's damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.  相似文献   

16.
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron''s damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.  相似文献   

17.
Peptidoglycan deacetlyase (HP0310, HpPgdA) from the gram‐negative pathogen Helicobacter pylori, is the enzyme responsible for a peptidoglycan modification that counteracts the host immune response. In a recent study, we determined the crystallographic structure of the enzyme, which is a homo‐tetramer (Shaik et al., PloS One 2011;6:e19207). The metal‐binding site, which is essential for the enzyme's catalytic activity, is visible within the structure, but we were unable to identify the nature of the metal itself. In this study, we have obtained a higher‐resolution crystal structure of the enzyme, which shows that the ion bound is, in fact, zinc. Analysis of the structure of the four sites, one per monomer, and quantum chemical calculations of models of the site in the presence of different divalent metal ions show an intrinsic preference for zinc, but also significant flexibility of the site so that binding of other ions can eventually occur. Proteins 2014; 82:1311–1318. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
We have studied an interaction, the "73/294-interaction", between residues 294 in M1 RNA (the catalytic subunit of Escherichia coli RNase P) and +73 in the tRNA precursor substrate. The 73/294-interaction is part of the "RCCA-RNase P RNA interaction", which anchors the 3' R(+73)CCA-motif of the substrate to M1 RNA (interacting residues underlined). Considering that in a large fraction of tRNA precursors residue +73 is base-paired to nucleotide -1 immediately 5' of the cleavage site, formation of the 73/294-interaction results in exposure of the cleavage site. We show that the nature/orientation of the 73/294-interaction is important for cleavage site recognition and cleavage efficiency. Our data further suggest that this interaction is part of a metal ion-binding site and that specific chemical groups are likely to act as ligands in binding of Mg(2+) or other divalent cations important for function. We argue that this Mg(2+) is involved in metal ion cooperativity in M1 RNA-mediated cleavage. Moreover, we suggest that the 73/294-interaction operates in concert with displacement of residue -1 in the substrate to ensure efficient and correct cleavage. The possibility that the residue at -1 binds to a specific binding surface/pocket in M1 RNA is discussed. Our data finally rationalize why the preferred residue at position 294 in M1 RNA is U.  相似文献   

19.
Interaction of Mg2+, Ca2+, Cu2+ ions with the four-stranded poly(I) was studied using differential UV and visible spectroscopies. It was shown that, up to concentrations of approximately 0.1 M, Mg2+ and Ca2+ ions do not bind to heteroatoms of hypoxanthine of the four-stranded poly(I). Cu2+ ions interact with N7 (and/or N1) and O6 (through the water molecule of the hydrate shell of the ion). The latter seems to induce the enolization of hypoxanthine the deprotonation of N1, and, as a result, the transition of the four-stranded helix to single-stranded coils. Single-stranded chains form compact particles with an effective radius of about 100 A.  相似文献   

20.
两种方法分离纤维蛋白原效果的比较   总被引:1,自引:0,他引:1  
为了比较冷乙醇沉淀法和离子交换层析法在分离止血胶成分中的纤维蛋白原的效果,本实验将灭活病毒的步骤加在溶解Nitschmann组分I中进行,结果发现0.3%磷酸三丁酯/1%吐温-80不仅具有灭活病毒的作用,而且还能促进纤维蛋白原的溶解;分别用冷乙醇沉淀法和离子交换层析法分离纤维蛋白原,结果两种方法分离的纤维蛋白原均符合止血胶要求。冷乙醇沉淀法分离虽然凝血因子Ⅷ有一定损失,但纤维蛋白原纯度和回收率均高于离子交换层析法的分离效果,这提示冷乙醇沉淀法较离子交换层析法更适于分离止血胶用纤维蛋白原。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号