首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dilatometric measurements were made to determine the change in apparent specific volume φ of DNA resulting from thermal denaturation in neutral solution, φ increased continuously with temperature in the range 10–85°C. No deviations from a monotonically rising curve were observed in the φ versus temperature profile in the region of the melting temperature. The results are interpreted in terms of a partial loss of the preferentially bound DNA hydration shell. The nature of the well known buoyant density difference between native and denatured DNA was investigated by evaluating the densities in a series of cesium salt gradients at constant temperature. Extrapolation of the results to zero water activity indicates that the partial specific volumes of anhydrous native and denatured DNA are equal. The density difference at nonzero water activities is attributed to decreased hydration in the denatured state. The absence of a related change in φ accompanying the denaturation in the dilatometric experiments suggests that the probable volume change associated with loss of bound water during denaturation is accompanied by other compensatory volume effects. The possible nature of these volume effects is discussed.  相似文献   

2.
Many diseases in humans are caused by mutations that decrease the stability of specific proteins or increase their susceptibility to aggregation. Consequently, the availability of high-throughput methods for assessing protein stability and aggregation properties under physiological conditions (e.g., 37 degrees C) is necessary to analyze physicochemical properties under conditions that are closer to in vivo models. Therefore, the authors have explored the use of isothermal denaturation (ITD) in a 384-well format to evaluate the reproducibility of the method in assessing the stability of proteins at temperatures below the melting temperature and detecting the binding of ligands. Under the conditions tested, the authors were able to assess the stability of citrate synthase and malate dehydrogenase at different constant temperatures and detect the binding of oxaloacetate and nicotinamide adenine dinucleotide to these 2 enzymes, respectively, using the 384-well format. The ITD experiments detected ligand binding to these proteins at about 4 times lower concentration compared with techniques that measure changes in melting temperature. The data show that ITD can be applied to screen libraries of a relatively large number of compounds or detect small stability differences between protein variants.  相似文献   

3.
The molecular basis of thermal stability of globular proteins is a highly significant yet unsolved problem. The most promising approach to its solution is the investigation of the structure-function relationship of homologous enzymes from mesophilic and thermophilic sources. In this context, D-glyceraldehyde-3-phosphate dehydrogenase has been the most extensively studied model system. In the present study, the most thermostable homolog isolated so far is described with special emphasis on the stability of the enzyme under varying solvent conditions. D-Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima is an intrinsically thermostable enzyme with a thermal transition temperature around 110 degrees C. The amino acid sequence, electrophoresis, and sedimentation analysis prove the enzyme to be a homotetramer with a gross structure similar to its mesophilic counterparts. The enzyme in the absence and in the presence of its coenzyme, NAD+, exhibits no drastic structural differences except for a 3% change in sedimentation velocity reflecting slight alterations in the quaternary structure of the enzyme. At low temperature, in the absence of denaturants, neither "cold denaturation" nor subunit dissociation are detectable. Guanidinium chloride and pH-dependent deactivation precede the decrease in fluorescence emission and ellipticity, suggesting a complex denaturation mechanism. An up to 3-fold activation of the enzyme at low guanidinium concentration may be interpreted in terms of a compensation of the tight packing of the thermophilic enzyme at low temperature. Under destabilizing conditions, e.g. moderate concentrations of chaotropic agents, low temperature favors denaturation. The effect becomes important in reconstitution experiments after preceding guanidinium denaturation; the reactivation yield at low temperature drops to zero, whereas between 35 and 80 degrees C reactivation exceeds 80%. Shifting the temperature from approximately 0 degrees C to greater than or equal to 30 degrees C releases a trapped tetrameric intermediate in a fast reaction. Concentration-dependent reactivation experiments prove renaturation of the enzyme to involve consecutive folding and association steps. Reconstitution at room temperature yields the native protein, in spite of the fact that the temperature of the processes in vitro and in vivo differ by more than 60 degrees C.  相似文献   

4.
Arai S  Hirai M 《Biophysical journal》1999,76(4):2192-2197
To clarify mechanisms of folding and unfolding of proteins, many studies of thermal denaturation of proteins have been carried out at low protein concentrations because in many cases thermal denaturation accompanies a great tendency of aggregation. As small-angle x-ray scattering (SAXS) measurements are liable to use low-concentration solutions of proteins to avoid aggregation, SAXS has been regarded as very difficult to observe detailed features of thermal structural transitions such as intramolecular structural changes. By using synchrotron radiation SAXS, we have found that the presence of repulsive interparticle interaction between proteins can maintain solute particles separately to prevent further aggregation in thermal denaturation processes and that under such conditions the thermal structural transition of hen egg-white lysozyme (HEWL) holds high reversibility even at 5% w/v HEWL below pH approximately 5. Because of the use of the high concentration of the solutions, the scattering data has enough high-statistical accuracy to discuss the thermal structural transition depending on the structural hierarchy. Thus, the tertiary structural change of HEWL starts from mostly the onset temperature determined by the differential scanning calorimetry measurement, which accompanies a large heat absorption, whereas the intramolecular structural change, corresponding to the interdomain correlation and polypeptide chain arrangement, starts much prior to the above main transition. The present finding of the reversible thermal structural transitions at the high protein concentration is expected to enable us to analyze multiplicity of folding and unfolding processes of proteins in thermal structural transitions.  相似文献   

5.
Recent investigations of the thermodynamics of protein denaturation, in particular of pressure effects, have questioned the fundamental importance, hitherto assumed, of hydrophobic interactions in the native conformations of proteins. The volume changes observed on protein denaturation are incompatible with the volume changes estimated on the basis of volume effects observed in low molecular weight model systems of the aliphatic groups. In the present paper the model systems generally considered are critically discussed. It is concluded, that solutions of low molecular weight alkanes may not be any adequate models of aliphatic groups in proteins. Studies of more appropriate model systems suggest that the volume changes to be expected, when buried aliphatic groups of proteins are exposed to water, are small and positive, and mainly due to structural changes of the water. These volume changes are in accordance with the volume changes actually measured of protein denaturation, and the latter volume effects are taken as supporting evidence of the importance of hydrophobic interactions in protein confonriations.  相似文献   

6.
Apolipoprotein B was isolated from human plasma low-density-lipoprotein without precipitation by diethyl ether/ethanol extraction of the protein in 6 M guanidine hydrochloride. The physical properties of this protein, which contained a residuum of approximately 7% phospholipid, were examined in 6 M guanidine solution under reducing conditions. The circular dichroism spectrum was indistinguishable from that of a random coil protein. Sedimentation equilibrium analyses of apolipoprotein B by the meniscus depletion method of Yphantis (1984, Biochemistry 3, 297-317) were complicated by heterogeneity and nonideality despite the low concentrations employed. 63 analyses of the weight average (Mw) and z average (Mz) molecular weight were made on the apolipoprotein B from 12 subjects. The Mw observed was a function of initial concentration, rotor speed, and a heterogeneity index (Mz/Mw). Multiple linear regression of apolipoprotein B molecular mass against these parameters suggested that an Mw of 540,000 +/- 110,000 would be observed under apparently ideal and homogeneous conditions. The sedimentation coefficient and intrinsic viscosity of the reduced protein at 25 degrees C in 6 M guanidine were 2.13 S and 116 ml/g, respectively; these values predict molecular weights of 640,000 and 250,000, respectively, if apolipoprotein B was fully denatured into a random coil. Lack of agreement between these estimates and with the sedimentation equilibrium analysis can best be explained by compactness of structure and incomplete denaturation to a random coil state. Furthermore, an irreversible temperature dependence of apolipoprotein B reduced viscosity indicated that residual structure remained in solutions of 6 M guanidine hydrochloride/20 mM dithiothreitol. Taken together, the physical data demonstrate that apolipoprotein is a single polypeptide of approximately 540 kDa, whose structure resists denaturation under conditions where most proteins exist as random coils.  相似文献   

7.
Studies of the denaturation and partial renaturation of ovalbumin   总被引:6,自引:4,他引:2       下载免费PDF全文
1. The denaturation of ovalbumin by the reagents sodium dodecyl sulphate and guanidinium chloride was investigated, by following the changes in sedimentation velocity, optical rotatory dispersion and viscosity as a function of denaturant concentration. 2. With sodium dodecyl sulphate both the optical-rotatory-dispersion parameters a(0) and b(0) become more negative, the sedimentation coefficient decreases and the viscosity increases; significant differences in the denaturation profiles are observed. The change in each parameter is indicative of only limited denaturation. 3. With guanidinium chloride the transition occurs over the concentration range 1-4m: more extensive changes occur in all the physical parameters than with sodium dodecyl sulphate. The values of a(0) and b(0) are indicative of complete denaturation. Reduction by mercaptoethanol produces only minor further changes. 4. Renaturation was attempted from both denaturants, the removal of reagent being accomplished reversibly by controlled slow dialysis. Partial renaturation was observed, but aggregated or insoluble material was produced in both cases at relatively low concentrations of denaturant. Similar behaviour was observed with fully reduced protein in guanidinium chloride-mercaptoethanol; complete renaturation could not be brought about even at very low protein concentrations.  相似文献   

8.
The conditions for acidic denaturation of double stranded RNA were found. Under these conditions a limited degradation of high molecular weight viral RNA took place. This degradation was determined by the degree of fragmentation and loss of infectivity at acidic conditions. It was found that acidic denaturation of RNA in the solutions of low ionic strength was accompanied by a considerable increase of sedimentation coefficient. Under these conditions the coefficients of sedimentation and molecular weights of RNAs studied are connected by the following function S20=2.84-10(-2) Mr0.689. The conclusion has been drawn that the sedimentation under the conditions for acidic denaturation could be used both for molecular weight determination and the practical preparation of unaggregated strands of RNA.  相似文献   

9.
Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.  相似文献   

10.
Using spectroscopic methods (circular dichroism and intrinsic protein fluorescence) and immunoenzyme assay, changes in the spatial and antigenic structure of yersinin, porin from outer membrane of Yersinia pseudotuberculosis, were studied in solutions of ionic and non-ionic detergents at various temperatures and low pH values. Yersinin was shown to retain its secondary structure under various denaturation conditions, the content of regular structural patterns depending on specific action of the denaturation agent. Process of yersinin denaturation similarly to other membrane proteins appears to occur via two structural transitions: dissociation of oligomers and denaturation of monomers. At the first stage changes of quaternary structure accompanied by the loss of so called conformational determinants were observed. Temperature-dependent changes of monomers' tertiary structure affect antigenic activity of yersinin in a smaller degree.  相似文献   

11.
The determination of the molecular weight of a membrane protein by sedimentation equilibrium is complicated by the fact that these proteins interact with detergents and form complexes of unknown density. These effects become marginal when running sedimentation equilibrium at gravitational transparency, i.e., at the density corresponding to that of the hydrated detergent micelles. Dodecyl-maltoside and octyl-glucoside are commonly used for dissolving membrane proteins. The density of micelles thereof was measured in sucrose or Nycodenz. Both proved to be about 50% lower than those of the corresponding non-hydrated micelles. Several membrane proteins were centrifuged at sedimentation equilibrium in sucrose- and in Nycodenz-enriched solutions of various densities. Their molecular weights were then calculated by using the resulting slope value at the density of the hydrated detergent micelles, i.e. at gravitational transparency, and the partial specific volume corrected for a 50% hydration of the membrane protein. The molecular weights of all measured membrane proteins, i.e. of photosystem II complex, reaction center of Rhodobacter sphaeroides R26, spinach photosystem II reaction center (core complex), bacteriorhodopsin, OmpF-porin and rhodopsin from Bovine retina corresponded within +/-15% to those reported previously, indicating a general applicability of this approach.  相似文献   

12.
The protein turkey-heart cytochrome c is used as a model protein to study charge effects in sedimentation equilibrium experiments in three-component solutions. Data are given for the dependence of the apparent M (1–υ ρ) on ρ in solutions of KCl, RbCl, CsCl, and triethylamine hydrochloride. The results show the Donnan effect to have a significant influence on the apparent molecular weight, found by extrapolation of the data to a solution density of one. The apparent molecular weights are for protein at infinite dilution. A theoretical treatment is presented where the magnitude of this effect can be predicted accurately from the formal net charge of the protein as computed from the amino acid composition. The results are shown to be important in computing the preferential hydration of the protein in concentrated salt solutions. For such systems the Donnan effect should be subtracted from the total interaction coefficient for multicomponent system in order to obtain the preferential hydration.  相似文献   

13.
The major objectives for preparative protein chromatography are maximal loading and increased flow rate while maintaining defined resolution. Conventionally a series of chromatographic experiments are performed and the optimal conditions are selected according to the separation criteria. Computer-aided process design uses the same strategy, except a group of related experiments are generated by computer simulation. The access to concrete separation parameters for valid simulation necessitates chromatographic experiments. Optimal conditions are determined in the same manner as conducted in the conventional strategy. Beside other parameters, the distribution coefficient (K) determines the performance of a chromatographic purification under overloading conditions. In ion-exchange chromatography the distribution coefficient is strongly influenced by the protein concentration (C) and the salt concentration (I). A strategy to derive the distribution coefficient from chromatographic experiments, such as isocratic runs (pulse response), linear gradients, and frontal analysis, is described and compared to previously published strategies. In ion-exchange chromatography, the number of plates and transfer units change with the salt concentration. The distribution coefficient for salt also changes under various conditions including salt and protein concentration. The number of plates and transfer units also vary with the flow rate. Furthermore criteria such as the multicomponent situation require a more complex mathematical treatment. Several solutions have been validated to circumvent those obstacles. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day?1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs.  相似文献   

15.
Glycerinated hollow cylinders of hypocotyl segments excised from the elongation region of cowpea seedlings were heated for 15s in 50% glycerol at 70, 80 or 90°C. Their in vitro yield threshold tension (y) and extensibility (φ) were determined by stress-strain experiments under the perfusion of solutions of pH 4·0 or 6·2. The decrement in y and the increment in φ with acidification were extinguished at 80 and 90°C, respectively. Moreover, such changes in φ and y with acidification were prevented by proteinase treatment for 6 and 10 h, respectively. These results suggest that these two cell wall mechanical properties are controlled, respectively, by two functional proteins activated by acid.  相似文献   

16.
To investigate the structural stability of proteins, we analyzed the thermodynamics of an artificially designed 30-residue peptide. The designed peptide, NH2-EELLPLAEALAPLLEALLPLAEALAPLLKK-COOH (PERI COIL-1), with prolines at i + 7 positions, forms a pentameric alpha-helical structure in aqueous solution. The thermal denaturation curves of the CD at 222 nm (pH 7.5) show an unusual cold denaturation occurring well above 0 degrees C and no thermal denaturation is observable under 90 degrees C. This conformational change is reversible and depends on peptide concentration. A 2-state model between the monomeric denatured state (5D) and the pentameric helical state (H5) was sufficient to analyze 5 thermal denaturation curves of PERI COIL-1 with concentrations between 23 and 286 microM. The analysis was carried out by a nonlinear least-squares method using 3 fitting parameters: the midpoint temperature, Tm, the enthalpy change, delta H(Tm), and the heat capacity change, delta Cp. The association number (n = 5) was determined by sedimentation equilibrium and was not used as a fitting parameter. The heat capacity change suggests that the hydrophobic residues are buried in the helical state and exposed in the denatured one, as it occurs normally for natural globular proteins. On the other hand, the enthalpy and the entropy changes have values close to those found for coiled-coils and are quite distinct from typical values reported for natural globular proteins. In particular, the enthalpy change extrapolated at 110 degrees C is about 3 kJ/mol per amino acid residue, i.e., half of the value found for globular proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The denaturation of lysozyme and ribonuclease A by guanidine hydrochloride was followed in the presence and absence of glycerol and sorbitol by means of circular dichroism measurements at 25 degrees C. The protein-solvent interactions in the presence of these polyols were also studied by means of density measurements, for discussion of the mechanism of protein stabilization by polyols in terms of the multicomponent thermodynamic theory. The free energy of denaturation depends linearly on the molarity of guanidine hydrochloride at a given polyol concentration, without modification of the cooperativity of the transition. The free energy of denaturation at an infinite dilution of guanidine hydrochloride increases in proportion to the polyol concentration. These results indicate the competing solvent effects of polyols and guanidine hydrochloride on the structures of proteins. In water-protein-polyol systems, protein is preferentially hydrated to elevate its chemical potential, predominantly due to the unfavorable interaction of polyols with the exposed nonpolar amino acid residues. By linkage with the free energy of denaturation, it was quantitatively determined that the chemical potential of denatured protein is more extensively elevated by addition of polyols than that of native protein. These results demonstrate that polyols stabilize the protein structure through strengthening of the hydrophobic interaction, competing with the effect of guanidine hydrochloride.  相似文献   

18.
Osmolytes are molecules whose function, among others, is to balance the hydrostatic pressure between the intracellular and extracellular compartments. Accumulation of osmolytes in a cell occurs in response to stress caused by changes in pressure, temperature, pH, or the concentration of inorganic salts. Osmolytes can prevent the denaturation of native proteins and promote the renaturation of unfolded proteins. Investigation of the roles of osmolyte in these processes is essential for our understanding of the mechanisms of protein folding and function in vivo. The large number of published reports that have been devoted to the effects of osmolytes on proteins are not always consistent with each other. In this review, an attempt is made to systemize the array of data on this subject and to consider the problem of protein folding and stability in osmolyte solutions from a single viewpoint.  相似文献   

19.
Steady-state intrinsic tryptophan fluorescence spectroscopy is used as a rapid, robust and economic way for screening the thermal protein conformational stability in various formulations used during the early biotechnology development phase. The most important parameters affecting protein stability in a liquid formulation, e. g. during the initial purification steps or preformulation development, are the pH of the solution, ionic strength, presence of excipients and combinations thereof. A well-defined protocol is presented for the investigation of the thermal conformational stability of proteins. This allows the determination of the denaturation temperature as a function of solution conditions. Using intrinsic tryptophan fluorescence spectroscopy for monitoring the denaturation and folding of proteins, it is crucial to understand the influence of different formulation parameters on the intrinsic fluorescence probes of proteins. Therefore, we have re-evaluated and re-assessed the influence of temperature, pH, ionic strength, buffer composition on the emission spectra of tryptophan, phenylalanine and tyrosine to correctly analyse and evaluate the data obtained from thermal-induced protein denaturation as a function of the solution parameters mentioned above. The results of this study are a prerequisite for using this method as a screening assay for analysing the conformational stability of proteins in solution. The data obtained from intrinsic protein fluorescence spectroscopy are compared to data derived from calorimetry. The advantage, challenges and applicability using intrinsic tryptophan fluorescence spectroscopy as a routine development method in pharmaceutical biotechnology are discussed.  相似文献   

20.
Absolute values of heat capacity for some hydrated globular proteins have been studied by differential scanning calorimetry (DSC) method. It has been found that for the proteins with completely bound water, like in the case of protein solutions, the value of heat capacity of denatured proteins is higher than that prior to denaturation. Depending on temperature and humidity the denatured proteins can be either in high elastic or glass state. Specific heat capacities for these two states have the same values for all proteins and depend only on temperature with a characteristic increment of 0.55 J/g.K. at glass transition. The glass transitions were observed not only in denatured but also in native proteins. As it follows from our results, the main contribution to the heat capacity increment at denaturation is connected with the thermal motion in the protein globule which is in contrast with the commonly accepted ideas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号