首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

2.
The interactions between calmodulin, ATP and Ca2+ on the red cell Ca2+ pump have been studied in membranes stripped of native calmodulin or rebound with purified red cell calmodulin. Calmodulin stimulates the maximal rate of (Ca2+ + Mg2+)-ATPase by 5–10-fold and the rate of Ca2+-dependent phosphorylation by at least 10-fold. In calmodulin-bound membranes ATP activates (Ca2+ + Mg2+)-ATPase along a biphasic concentration curve (Km1 ≈ 1.4 μM, Km2 ≈ 330 μM), but in stripped membranes the curve is essentially hyperbolic (Km ≈ 7 μM). In calmodulin-bound membranes Ca2+ activates (Ca2+ + Mg2+)-ATPase at low concentrations (Km < 0.28 μM) in stripped membranes the apparent Ca2+ affinities are at least 10-fold lower.The results suggest that calmodulin (and perhaps ATP) affect a conformational equilibrium between E2 and E1 forms of the Ca2+ pump protein.  相似文献   

3.
The (Ca2+ + Mg2+)-ATPase of rabbit sarcoplasmic reticulum, when labelled at two Ca2+-protected sites with N-cyclohexyl-N′-(4-dimethylamino-α-naphthyl)carbodiimide (NCD-4) retains Ca2+ binding capacity at the sites with Kd values of approx. 3 μM and 0.12 mM as assessed by fluorescence titration. The sites correspond to the two high-affinity Ca2+ binding sites present in the native ATPase. The NCD-4 labelled ATPase exhibits slow conformational changes at each site on addition of Ca2+. It retains the ability to form phosphoenzyme, and can most likely translocate Ca2+.  相似文献   

4.
We have applied the technique of saturation transfer electron paramagnetic resonance to study the rotational diffusion of spin labeled membrane bound cholinergic receptors from Torpedo marmorata. Two different spin labels were used: a spin labeled maleimide derivative which binds covalently to proteins and a long chain spin labeled acylcholine which binds reversibly with a high affinity to the receptor protein. The maleimide spin label has a motion whose rotational correlation time is τ2 > 10?3 sec. The long chain spin labeled acylcholine indicates slightly more motion (τ2 ? 10?4sec), but the nitroxide in this latter case is probably more loosely bound.  相似文献   

5.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

6.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

7.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

8.
9.
The effects of copper on the activity of erythrocyte (Ca2+ + Mg2+)-ATPase have been tested on membranes stripped of endogenous calmodulin or recombined with purified calmodulin. The interactions of copper with Ca2+, calmodulin and (Mg-ATP)2? were determined by kinetic studies. The most striking result is the potent competitive inhibition exerted by (Cu-ATP)2? against (Mg-ATP)2?Ki = 2.8 μM), while free copper gives no characteristic inhibition. Our results also demonstrate that copper does not compete with calcium either on the enzyme or on calmodulin. The fixation of calmodulin on the enzyme is not altered in the presence of copper as shown by the fact that the dissociation constant remains unaffected. It may be speculated that (Cu-ATP)2? is the active form of copper, which could plausibly be at the origin of some of the pathological features of erythrocytes observed in conditions associated with excess copper.  相似文献   

10.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

11.
Several characteristics of calmodulin association with brain synaptic and coated vesicles were analyzed and compared. Radioimmunoassay revealed that both classes of vesicles contain approx. 1 μg of calmodulin per mg of vesicle protein. Discontinuous sucrose gradients revealed that coated and synaptic vesicles preparations were homogeneous and had different sedimentation properties. Binding of 125I-labeled calmodulin to synaptic and coated vesicles was Ca2+ dependent and displaced by unlabeled calmodulin but not by troponin-C. Scatchard analysis revealed the presence of two binding sites. In both vesicle types there was one high-affinity, low-binding-capacity site (Kd = 1–39 nM and Bmax = 4–16 pmol/mg) and one low-affinity, high-binding-capacity site (Kd = 102–177 nM and Bmax = 151–202 pmol/mg). (Ca2+ + Mg2+)-ATPase activity was stimulated in both synaptic and coated vesicles by calmodulin. Thus synaptic and coated vesicles may possess similar calmodulin binding sites.  相似文献   

12.
The interaction of lanthanides and other cations with phosphatidylcholine bilayers present as single bilayer vesicles in 2H2O has been investigated in terms of stoichiometry, apparent binding constants and environmental conditions.Lanthanides are shown to form 2 : 1 (molar ratio) phosphatidylcholine to metal ion complexes.The apparent binding constant Kb varies as a function of the quantity of metal ion bound and as a function of the Cl? concentration. The apparent binding constant at “zero loading” is K0 = 1.25 · 104L2 · M?at 0.15 M KCl. It decreases exponentially with increased “loading” expressed as the molar ratio of metal ion bound to effective phosphatidylcholine concentration and increases exponential with Cl? concentration.The interaction of lanthanides and divalent cations such as Ca2+ and Mg2+ is independent of pH in the pH range 3–7+ and 3–10 respectively, but is sensitive to the nature of the anion. The presence of anions enhances the interaction with polyvalent cations, the chaotropic anions showing the largest effect. The order of enhancement is Cl? < Br? < NO3? < SCN? < I? < ClO4?. The nature of the monovalent counterion (cation) has little effect on the enhanced binding of lanthanides in the presence of the above anions.The affinity of other polyvalent cations for phosphatidylcholine bilayers has been determined by competition with lanthanides. The physiologically important divalent cations Ca2+ and Mg2+ both bind less strongly (by about an order of magnitude) to the lipid surface. The order of binding of cations reflects direct binding to the phosphodiester group, with UO22+ showing the highest affinity.  相似文献   

13.
Calcium uptake by adipocyte endoplasmic reticulum was studied in a rapidly obtained microsomal fraction. The kinetics and ionic requirements of Ca2+ transport in this preparation were characterized and compared to those of (Ca2+ + Mg2+)-ATPase activity. The time course of Ca2+ uptake in the presence of 5 mM oxalate was nonlinear, approaching a steady-state level of 10.8–11.5 nmol Ca2+/mg protein after 3–4 min of incubation. The rate of Ca2+ transport was increased by higher oxalate concentrations with a near linear rate of uptake at 20 mM oxalate. The calculated initial rate of calcium uptake was 18.5 nmol Ca2+/mg protein per min. The double reciprocal plot of ATP concentration against transport rate was nonlinear, with apparent Km values of 100 μM and 7 μM for ATP concentration ranges above and below 50 μM, respectively. The apparent Km values for Mg2+ and Ca2+ were 132 μM and 0.36–0.67 μM, respectively. The energy of activation was 23.4 kcal/mol. These kinetic properties were strikingly similar to those of the microsomal (Ca2+ + Mg2+)-ATPase. The presence of potassium was required for maximum Ca2+ transport activity. The order of effectiveness of monovalent cations in stimulating both Ca2+ transport and (Ca2+ + Mg2+-ATPase activity was K+ >Na+ = NH4+ >Li+ . Ca2+ transport and (Ca2+ + Mg2+)-ATPase activity were both inhibited 10–20% by 6 mM procaine and less than 10% by 10 mM sodium azide. Both processes were completely inhibited by 3 mM dibucaine or 50 μM p-chloromercuribenzene sulfonate. The results indicate that Ca2+ transport in adipocyte endoplasmic reticulum is mediated by a (Ca2+ + Mg2+)-ATPase and suggest an important role for endoplasmic reticulum in control of intracellular Ca2+ distribution.  相似文献   

14.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

15.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

16.
17.
The magnesium ion-dependent equilibrium of vacant ribosome couples with their subunits
70 S?k?1k150 S+30S
has been studied quantitatively with a novel equilibrium displacement labeling method which is more sensitive and precise than light-scattering. At a concentration of 10?7m, tight couples (ribosomes most active in protein synthesis) dissociate between 1 and 3 mm-Mg2+ at 37 °C with a 50% point at 1.9 mm. The corresponding association constants Ka′ are 5.1 × 105m?1 (1 mm-Mg2+), 3.5 × 107m?1 (2 mm), and 1.2 × 109m?1 (3 mm), about five orders of magnitude higher than the Ka′ value of loose couples studied by Spirin et al. (1971) and Zitomer & Flaks (1972).In this range of Mg2+ concentrations (37 °C, 50 mm-NH4+) the rate constants depend exponentially and in opposite ways on the Mg2+ concentration: k1 = 2.2 × 10?3s?1, k?1 = 7.7 × 104m?1s?1 (2mm-Mg2+); k1 = 1.5 × 10?4s?1, k?1 = 1.7 × 107m?1s?1 (5 mm-Mg2+). Under physiological conditions (Mg2+ ~- 4 mm, ribosome concn ~- 10?7m), the equilibrium strongly favors association and the rate of exchange is slow (t12 ~- 10 min). In the range of dissociation (2 mm-Mg2+), association of subunits proceeds without measurable entropy change and hence ΔGO = ΔHO. The negative enthalpy change of ΔHO = ? 10 kcal suggests that association of subunits involves a shape change.Below a critical Mg2+ concentration (~- 2 mm), the 50 S subunits are converted irreversibly into the b-form responsible for the transition to loose couples. The results are compatible with two classes of binding sites, one class binding Mg2+ non-co-operatively and contributing to the free energy of association by reduction of electrostatic repulsion, and another class probably consisting of hydrogen bonds between components at opposite interfaces whose critical spatial alignment rapidly denatures in the absence of stabilizing magnesium ions.  相似文献   

18.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

19.
The rates of electron exchange between ferricytochrome c (CIII)3 and ferrocytochrome c (CII) were observed as a function of the concentrations of ferrihexacyanide (FeIII) and ferrohexacyanide (FeII) by monitoring the line widths of several proton resonances of the protein. Addition of FeII to CIII homogeneously increased the line widths of the two downfield paramagnetically shifted heme methyl proton resonances to a maximal value. This was interpreted as indicating the formation of a stoichiometric complex, CIII·FeII, in the over-all reaction:
CIII+FeII?k?1k1CIII·FeII?k?2k2CII·FeIII?k?3k3CIII+FeII
Values for k1k?1 = 0.4 × 103m?1and k2 = 208 s?1, respectively, were calculated from the maximal change in line width observed at pH 7.0 and 25 °C. Changes in the line width of CIII in the presence of FeII and either KCl or FeIII suggest that complexation is principally ionic, that FeIII and FeII compete for a common site. Addition of saturating concentrations of FeIII to CIII produced only minor changes in the nuclear magnetic resonance spectrum of CIII suggesting that complexation occurs on the protein surface.Addition of FeIII to CII in the presence of excess FeII (to retain most of the protein as CII) increased the line width of the methyl protons of ligated methionine 80. A value for k?2 ≈ 2.08 × 104 s?1 was calculated from the dependence of linewidth on the concentration of FeII at 24 °C. These rates are shown to be consistent with the over-all rates of reduction and oxidation previously determined by stopped flow measurements, indicating that k2 and k?2 were rate limiting. From the temperature dependence the enthalpies of activation are 7.9 and 15.2 kcal/mol for k2 and k?2, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号