首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A ternary complex of hyaluronic acid-binding region and link protein bound to hyaluronic acid was isolated from limit clostripain digests of proteoglycan aggregates isolated from the Swarm rat chondrosarcoma. Under these conditions, the hyaluronic acid-binding region has a molecular weight of ? 65,000 (HA-BR65). N-terminal amino acids in the complex were selectively l4C-carbamylated. The resulting derivatized HA-BR65 was isolated, and tryptic peptide maps were prepared and developed on two-dimensional TLC sheets. A single, labeled peptide was obtained which gave a Mr by ? 8,000 by SDS-PAGE. Chymotrypsin digestion of the ternary complex reduced the molecular weight of HA-BR65 to a polypeptide of ? 55,000 (HA-BR55) which still retains the same N-terminal tryptic peptide. Partial digestion of proteoglycan aggregates with clostripain generated a series of larger intermediates with the hyaluronic acid-binding region. Direct SDS-PAGE analysis revealed one major intermediate with Mr ? 109,000 (HA-BR109) as well as HA-BR65. After chondroitinase digestion, two additional prominent intermediates were observed on a SDS-PAGE gel at Mr ? 120,000 (HA-BR120) and ? 140,000 (HA-BR140). All the intermediates were recognized by a monoclonal antibody specific for the hyaluronic acid-binding region, and all of them contained the same N-terminal tryptic peptide. The results indicate that the N terminus of the core protein is at the hyaluronic acid-binding end of the proteoglycan and that the chondroitin sulfate chains are first present on the core protein in a region between 109,000 and 120,000 molecular weight away from the N terminus.  相似文献   

2.
Antibodies were raised in rabbits by injection of cartilage proteoglycan monomers, isolated hyaluronic acid-binding region, polysaccharide-peptides prepared by trypsin digestion of proteoglycans and link-protein. The rabbits injected with the proteoglycan monomers made antibodies reacting with the intact proteoglycan. The antiserum contained antibodies specific for, and also reacting with, the isolated hyaluronic acid-binding region and the keratan sulphate-rich region. In addition there were probably antibodies reacting with other structures of the proteoglycan monomer. When isolated hyaluronic acid-binding region was used for immunization the antibodies obtained reacted specifically with the hyaluronic acid-binding region. The antibodies obtained from rabbits immunized with the polysaccharide-peptides reacted with the proteoglycan monomers and showed a reaction identical with that of the chondroitin sulphate-peptides isolated after trypsin digestion of proteoglycans. The antibodies prepared with the link-protein as the antigen reacted only with the link-protein and not with any preparation from the proteoglycan monomer. Neither did any of the antisera raised against the proteoglycan monomer or its substructures react with the link-protein. Separately it was shown that the peptide 'maps' prepared from trypsin digests of the link-protein and the hyaluronic acid-binding region were different. Therefore it appears that the link-protein is not structurally related to the proteoglycan or the hyaluronic acid-binding region. Digestion of proteoglycan monomers or isolated hyaluronic acid-binding region with trypsin did not destroy the antigenic sites of the hyaluronic acid-binding region. In contrast trypsin digests of previously reduced and alkylated preparations did not react with the anti-(hyaluronic acid-binding region). The trypsin digests, however, reacted with both the antibodies directed against the chondroitin sulphate-peptides and those against the keratan sulphate-peptides. Trypsin digestion of the link-proteins destroyed the antigenic site and the reactivity with the antibodies. By combining immunoassay of proteoglycan preparations before and after trypsin digestion it is feasible to quantitatively determine its substructures by using the antisera described above.  相似文献   

3.
The core protein of high buoyant density proteoglycans synthesized by chondrocytes in stage 24 chick limb bud mesenchymal cell cultures was cleaved with cyanogen bromide to produce 17 resolvable peptides on sodium dodecyl sulfate-polyacrylamide slab gels. Of these peptides, 10 appear to originate from the chondroitin sulfate-rich region, 2 appear to be derived from the keratan sulfate-rich region, and 5 seem to be derived from the hyaluronic acid-binding region. The peptides from the chondroitin sulfate-rich region are almost all large (200 to 64 kDa). In contrast, the peptides from the keratan sulfate-rich and hyaluronic acid-binding regions are relatively small (47 to 12 kDa). One peptide from the hyaluronic acid-binding region appears to contain mannose-rich N-linked oligosaccharides as inferred from its observed binding by concanavalin A. A different hyaluronic acid-binding region peptide and one of the keratan sulfate-rich peptides were shown to contain disulfide bonds and therefore may be involved in contributing to the tertiary structure of the hyaluronic acid-binding region. Based on these observations, a map of the chick chondrocyte proteoglycan core protein has been constructed.  相似文献   

4.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

5.
Antibodies specifically reacting with the link proteins, the hyaluronic acid-binding region and chondroitin sulphate-peptides were used to design specific radioimmunoassay procedures. The sensitivity of the method used for the link protein was about 20 ng/ml, and the other two components could be determined at concentrations of about 2 ng/ml. The radioimmunoassay procedures were tested by using proteoglycan subfractions or fragments thereof. The procedures used to quantify link protein and hyaluronic acid-binding region showed no cross-interference. Fragments of trypsin-digested proteoglycan monomers still reacted in the radioimmunoassay for hyaluronic acid-binding region. Subfractions of proteoglycan monomers separated according to size had a gradually higher relative content of the hyaluronic acid-binding region compared with both chondroitin sulphate-peptides and uronic acid, when the molecules were smaller. The proteoglycans therefore may contain a variably large chondroitin sulphate-rich region, which has a constant substitution with polysaccharide side chains.  相似文献   

6.
Cartilage proteoglycan aggregates were subjected to degradation by a metalloproteinase, capable of degrading proteoglycan, released from cartilage in culture. This proteinase was demonstrated to be immunologically identical with fibroblast stromelysin. An early release of hyaluronic acid-binding region and large glycosaminoglycan-attachment regions was observed. With increasing time the glycosaminoglycan-attachment regions were digested into smaller fragments and the hyaluronic acid-binding regions accumulated. The degradation of link proteins also occurred concomitantly with these events. Link proteins were converted into a component of similar size to that of the smallest native link protein component. N-Terminal sequence analysis of the three human link protein components indicated that they are all derived from the same protein core, which is closely homologous to that of the rat chondrosarcoma link protein. The two larger link proteins (Mr 48,000 and 44,000) contain the same N-terminal sequence, but they differ by the apparent presence of an N-linked oligosaccharide at residue 6 of the largest link protein component. The smallest link protein (Mr 41,000), however, has an N-terminal sequence equivalent to that commencing at residue 17 in the larger link proteins. It was found that the cartilage metalloproteinase cleaves link proteins in human neonatal cartilage proteoglycan aggregates at the His-16-Ile-17 bond, the same position at which the smallest link protein component appears to be derived naturally from the two larger link protein components. These results suggest that stromelysin secreted by chondrocytes can account for the increased accumulation of hyaluronic acid-binding regions and much of the degradation of link protein observed during aging within human articular cartilage.  相似文献   

7.
The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylated hyaluronic acid-binding region was used, in conjunction with avidin-peroxidase, as a specific probe for the light and electron microscopic localization of hyaluronic acid in developing and mature rat cerebellum. At 1 w postnatal, there is strong staining of extracellular hyaluronic acid in the presumptive white matter, in the internal granule cell layer, and as a dense band at the base of the molecular layer, surrounding the parallel fibers. This staining moves progressively towards the pial surface during the second postnatal week, and extracellular staining remains predominant through postnatal week three. In adult brain, there is no significant extracellular staining of hyaluronic acid, which is most apparent in the granule cell cytoplasm, and intra-axonally in parallel fibers and some myelinated axons. The white matter is also unstained in adult brain, and no staining was seen in Purkinje cell bodies or dendrites at any age. The localization of hyaluronic acid and its developmental changes are very similar to that previously found in immunocytochemical studies of the chondroitin sulfate proteoglycan in nervous tissue (Aquino, D. A., R. U. Margolis, and R. K. Margolis. 1984. J. Cell Biol. 99:1117-1129; Aquino, D. A., R. U. Margolis, and R. K. Margolis. J. Cell Biol. 99:1130-1139), and to recent results from studies using monoclonal antibodies to the hyaluronic acid-binding region and link protein. The presence of brain hyaluronic acid in the form of aggregates with chondroitin sulfate proteoglycans would be consistent with their similar localizations and coordinate developmental changes.  相似文献   

8.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

9.
Recent biochemical and sequence data suggest a possible relationship between Pgp-1 (identical to CD44/Hermes 1/p85) and a hyaluronic acid-binding function. Here, we have studied the hyaluronic acid-binding activity of a series of murine hematopoietic cell lines using several assays: cell aggregation by hyaluronic acid, binding of fluorescein-conjugated hyaluronic acid, and cell adhesion to hyaluronic acid-coated dishes. Certain Pgp-1-positive T and B cell lines show hyaluronic acid binding that is highly specific and is not competed for by other glycosaminoglycans. Monoclonal antibodies against Pgp-1, but not antibodies against other major cell surface glycoproteins, inhibited hyaluronic acid-induced cell aggregation and cell adhesion to hyaluronic acid-coated dishes. Additionally, some anti-Pgp-1 antibodies inhibited binding of fluorescein-hyaluronic acid to hyaluronic acid-binding lines. We found no Pgp-1-negative lines that bound, but many Pgp-1-positive cell lines did not bind hyaluronic acid. Two Pgp-1-positive thymomas that did not bind hyaluronic acid were induced by phorbol ester to bind hyaluronic acid with the same specificity as other hyaluronic acid-binding lines. Normal hematopoietic cells, including those which express high levels of Pgp-1, such as bone marrow myeloid cells and splenic lymphocytes, showed no detectable hyaluronic acid-binding activity. We discuss several models that might account for these observations: (1) the hyaluronic acid receptor is Pgp-1, but it normally exists in an inactive state; (2) hyaluronic acid receptors are a subset of a family of molecules recognized by anti-Pgp-1 antibodies; (3) the hyaluronic acid receptor is not Pgp-1, but is closely associated with Pgp-1 on the surface of cells which express hyaluronic acid-binding activity.  相似文献   

10.
The protein-keratan sulphate core has been obtained by chondroztinase treatment of the proteoglycan monomers. The hyaluronic acid-binding region of the proteoglycans was prepared by trypsin treatment of the proteoglycans under their associated form. Both preparations were submitted to cyanogen bromide treatemnt. The fragments were separated by gel filtrations and polyacrylamide gel electrophoreses. The protein-keratan sulphate core gave rise to two main classes of fragments: the larger ones apparently arose from the polysaccharide attachment region of the monomers; among the smaller ones four appeared to be connected to one of the larger fragments by disulphide bridges. The hyaluronic acid-binding region gave rise to fragments whose electrophoretic mobilities were similar to those of some of the smaller fragments characterized in the cyanogen bromide treated protein keratan sulphate core. The molecular weights as well as the amino acid and sugar compositions of all the cyanogen bromide fragments are reported.  相似文献   

11.
Hyaluronic acid-binding region and trypsin-link protein were prepared from bovine nasal cartilage proteoglycan complex after trypsin digestion. Binary complexes were reformed between trypsin-link protein and hyaluronic acid-binding region or hyaluronate. Upon trypsin treatment of these complexes, two fragments deriving from trypsin-link protein were characterized. One of them, of 20 kDa, corresponds in fact to a 140-amino acid long fragment and bears the glycosylated site of trypsin-link protein; it appears to be involved in proteoglycan/link protein interaction. The other, of 22 kDa, corresponds to the 200 C-terminal amino acids of trypsin-link protein; it appears to be involved in the binding of link protein with hyaluronic acid. A structural model of bovine trypsin-like protein depicting two distinct domains involved in hyaluronate and proteoglycan subunit interactions is proposed.  相似文献   

12.
Articular-cartilage proteoglycans in aging and osteoarthritis.   总被引:10,自引:5,他引:5       下载免费PDF全文
The composition of macroscopically normal hip articular cartilage obtained from dogs of various ages was studied. Pieces of cartilage with signs of degeneration were studied separately. In normal aging, the extraction yield of proteoglycans decreased; the keratan sulphate content of extracted proteoglycans increased and the chondroitin sulphate content decreased. The extracted proteoglycans were smaller in the older cartilage, mainly owing to a decrease in the chondroitin sulphate-rich region of the proteoglycan monomers. The hyaluronic acid-binding region and the keratan sulphaterich region were increased and the molar concentration of proteoglycan probably increase with increasing age. The degenerated cartilage had higher water content and the proteoglycans, as well as other tissue components, gave higher yields. The proteoglycan monomers from the degenerated cartilage were smaller than those from normal cartilage of the same age, and hence had a smaller chondroitin sulphate-rich region and some of the molecules also appeared to lack the hyaluronic acid-binding region. Increased proteolytic activity may be involved in the process of cartilage degeneration.  相似文献   

13.
A peptide with hyaluronic acid-binding properties was isolated from trypsin digests of bovine articular cartilage proteoglycan aggregate. This peptide originated from the N-terminus of the proteoglycan core protein, retained its function of forming complexes with hyaluronate and link protein and contained at least one keratan sulfate chain. Amino acid sequence data demonstrated that the first six amino acid residues of the N-terminus of bovine articular cartilage proteoglycan core protein differed from the same region from the rat chondrosarcoma proteoglycan. Further sequence data indicate areas of considerable sequence homology in the hyaluronic acid-binding regions of proteoglycans from the two species.  相似文献   

14.
Adult human articular cartilage contains a hyaluronic acid-binding protein of Mr 60 000-75 000, which contains disulphide bonds essential for this interaction. The molecule can compete with proteoglycan subunits for binding sites on hyaluronic acid, and can also displace proteoglycan subunits from hyaluronic acid if their interaction is not stabilized by the presence of link proteins. The abundance of this protein in the adult accounts for the reported inability to prepare high-buoyant-density proteoglycan aggregates from extracts of adult human cartilage [Roughley, White, Poole & Mort (1984) Biochem. J. 221, 637-644], whereas the deficiency of the protein in newborn human cartilage allows the normal recovery of proteoglycan aggregates from this tissue. The protein shares many common features with a hyaluronic acid-binding region derived by proteolytic treatment of a proteoglycan aggregate preparation, and this may also represent its origin in the cartilage, with its production increasing during tissue maturation.  相似文献   

15.
Binding of exogenous [35S]sulphate-labelled cartilage proteoglycans to cells was studied with suspension cultures of calf articular-cartilage chondrocytes. Proteoglycans interact with hyaluronic acid at the cell surface via their hyaluronic acid-binding region. The binding is time-dependent and saturable, but does not appear to be freely reversible. The bound 35S-labelled proteoglycans are located at the cell surface, and only small proportions of the proteoglycans are internalized.  相似文献   

16.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

17.
Abstract: We have studied developmental changes in the structure and concentration of the hyaluronic acid-binding proteoglycan, neurocan, and of phosphacan, another major chondroitin sulfate proteoglycan of nervous tissue that represents the extracellular domain of a receptor-type protein tyrosine phosphatase. A new monoclonal antibody (designated 1F6), which recognizes an epitope in the N-terminal portion of neurocan, has been used for the isolation of proteolytic processing fragments that occur together with link protein in a complex with hyaluronic acid. Both link protein and two of the neurocan fragments were identified by amino acid sequencing. The N-terminal fragments of neurocan are also recognized by monoclonal antibodies (5C4, 8A4, and 3B1) to epitopes in the G1 and G2 domains of aggrecan and/or in the hyaluronic acid-binding domain of link protein. The presence in brain of these N-terminal fragments is consistent with the developmentally regulated appearance of the C-terminal half of neurocan, which we described previously. We have also used a slot-blot radioimmunoassay to determine the concentrations of neurocan and phosphacan in developing brain. The levels of both proteoglycans increased rapidly during early brain development, but whereas neurocan reached a peak at approximately postnatal day 4 and then declined to below embryonic levels in adult brain, the concentration of phosphacan remained essentially unchanged after postnatal day 12. Keratan sulfate on phosphacan-KS (a glycoform that contains both chondroitin sulfate and keratan sulfate chains) was not detectable until just before birth, and its peak concentration (at 3 weeks postnatal) was reached ~1 week later than that of the phosphacan core protein. Immunocytochemical studies using monoclonal antibodies to keratan sulfate (3H1 and 5D4) together with specific glycosidases (endo-β-galactosidase, keratanase, and keratanase II) also showed that with the exception of some very localized areas, keratan sulfate is generally not present in the embryonic rat CNS.  相似文献   

18.
Cartilage proteoglycan aggregate formation. Role of link protein.   总被引:11,自引:9,他引:2       下载免费PDF全文
Cartilage proteoglycan aggregate formation was studied by zonal rate centrifugation in sucrose gradients. Proteoglycan aggregates, monomers and proteins could be resolved. It was shown that the optimal proportion of hyaluronic acid for proteoglycan aggregate formation was about 1% of proteoglycan dry weight. The reaggregation of dissociated proteoglycan aggregate A1 fraction was markedly concentration-dependent and even at 9 mg/ml only about 90% of the aggregates were reformed. The lowest proportion of link protein required for maximal formation of link-stabilized proteoglycan aggregates was 1.5% of proteoglycan dry weight. It was separately shown that link protein co-sedimented with the proteoglycan monomer. By competition with isolated hyaluronic acid-binding-region fragments, a proportion of the link proteins was removed from the proteoglycan monomers, indicating that the link protein binds to the hyaluronic acid-binding region of the proteoglycan monomer.  相似文献   

19.
We have previously shown that treatment of neonatal human articular-cartilage proteoglycan aggregates with H2O2 results in loss of the ability of the proteoglycan subunits to interact with hyaluronic acid and in fragmentation of the link proteins [Roberts, Mort & Roughley (1987) Biochem. J. 247, 349-357]. We now show the following. (1) Hyaluronic acid in proteoglycan aggregates is also fragmented by treatment with H2O2. (2) Although H2O2 treatment results in loss of the ability of the proteoglycan subunits to interact with hyaluronic acid, the loss of this function is not attributable to substantial cleavage of the hyaluronic acid-binding region of the proteoglycan subunits. (3) In contrast, link proteins retain the ability to bind to hyaluronic acid following treatment with H2O2. (4) The interaction between the proteoglycan subunit and link protein is, however, abolished. (5) N-Terminal sequence analysis of the first eight residues of the major product of link protein resulting from H2O2 treatment revealed that cleavage occurred between residues 13 and 14, so that the new N-terminal amino acid is alanine. (6) In addition, a histidine (residue 16) is converted into alanine and an asparagine (residue 21) is converted into aspartate by the action of H2O2. (7) Rat link protein showed no cleavage or modifications in similar positions under identical conditions. (8) This species variation may be related to the different availability of histidine residues required for the co-ordination of the transition metal ion involved in hydroxyl-radical generation from H2O2. (9) Changes in function of these structural macromolecules as a result of the action of H2O2 may be consequences of both fragmentation and chemical modification.  相似文献   

20.
Normal adult human articular cartilage in organ culture secretes proteoglycan subunits that cannot initially interact in a normal manner with hyaluronic acid unless the latter is present at high concentrations and a neutral pH is employed. However, if the newly secreted subunit is allowed to mature in the cartilage matrix for up to 12 h, then its ability to interact is indistinguishable from that of its more mature counterparts. This conversion does not take place if the proteoglycan subunits are incubated in dilute solutions in the absence of the cartilage, and it is prevented by culturing at low temperature. The newly secreted proteoglycan subunits can, however, be induced to interact with hyaluronic acid by the presence of link proteins. The complex formed by these three components cannot be dissociated in the presence of hyaluronic acid oligosaccharides, suggesting a normal aggregate configuration. It is thus possible that proteoglycan aggregate formation within the cartilage is initially mediated by the presence of link proteins, which induce a conformational change with the hyaluronic acid-binding region of the proteoglycan subunits, although additional modification may be necessary to render any such change irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号