首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.  相似文献   

2.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

3.
Ureteral peristaltic mechanism facilitates urine transport from the kidney to the bladder. Numerical analysis of the peristaltic flow in the ureter aims to further our understanding of the reflux phenomenon and other ureteral abnormalities. Fluid-structure interaction (FSI) plays an important role in accuracy of this approach and the arbitrary Lagrangian-Eulerian (ALE) formulation is a strong method to analyze the coupled fluid-structure interaction between the compliant wall and the surrounding fluid. This formulation, however, was not used in previous studies of peristalsis in living organisms. In the present investigation, a numerical simulation is introduced and solved through ALE formulation to perform the ureteral flow and stress analysis. The incompressible Navier-Stokes equations are used as the governing equations for the fluid, and a linear elastic model is utilized for the compliant wall. The wall stimulation is modeled by nonlinear contact analysis using a rigid contact surface since an appropriate model for simulation of ureteral peristalsis needs to contain cell-to-cell wall stimulation. In contrast to previous studies, the wall displacements are not predetermined in the presented model of this finite-length compliant tube, neither the peristalsis needs to be periodic. Moreover, the temporal changes of ureteral wall intraluminal shear stress during peristalsis are included in our study. Iterative computing of two-way coupling is used to solve the governing equations. Two phases of nonperistaltic and peristaltic transport of urine in the ureter are discussed. Results are obtained following an analysis of the effects of the ureteral wall compliance, the pressure difference between the ureteral inlet and outlet, the maximum height of the contraction wave, the contraction wave velocity, and the number of contraction waves on the ureteral outlet flow. The results indicate that the proximal part of the ureter is prone to a higher shear stress during peristalsis compared with its middle and distal parts. It is also shown that the peristalsis is more efficient as the maximum height of the contraction wave increases. Finally, it is concluded that improper function of ureteropelvic junction results in the passage of part of urine back flow even in the case of slow start-up of the peristaltic contraction wave.  相似文献   

4.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

5.
6.
Flow and stress patterns in human carotid artery bifurcation models, which differ in the bifurcation angle, are analysed numerically under physiologically relevant flow conditions. The governing Navier-Stokes equations describing pulsatile, three-dimensional flow of an incompressible non-Newtonian fluid are approximated using a pressure correction finite element method, which has been developed recently. The non-Newtonian behaviour of blood is modelled using Casson's relation, based on measured dynamic viscosity. The study concentrates on flow and stress characteristics in the carotid sinus. The results show that the complex flow in the sinus is affected by the angle variation. The magnitude of reversed flow, the extension of the recirculation zone in the outer sinus region and the duration of flow separation during the pulse cycle as well as the resulting wall shear stress are clearly different in the small angle and in the large angle bifurcation. The haemodynamic phenomena, which are important in atherogenesis, are more pronounced in the large angle bifurcation.  相似文献   

7.
《Biorheology》1996,33(3):185-208
An analytical solution for pulsatile flow of a generalized Maxwell fluid in straight rigid tubes, with and without axial vessel motion, has been used to calculate the effect of blood viscoelasticity on velocity profiles and shear stress in flows representative of those in the large arteries. Measured bulk flow rate Q waveforms were used as starting points in the calculations for the aorta and femoral arteries, from which axial pressure gradient ▿P waves were derived that would reproduce the starting Q waves for viscoelastic flow. The ▿P waves were then used to calculate velocity profiles for both viscoelastic and purely viscous flow. For the coronary artery, published ▿P and axial vessel acceleration waveforms were used in a similar procedure to determine the separate and combined influences of viscoelasticity and vessel motion.Differences in local velocities, comparing viscous flow to viscoelastic flow, were in all cases less than about 2% of the peak local velocity. Differences in peak wall shear stress were less than about 3%.In the coronary artery, wall shear stress differences between viscous and viscoelastic flow were small, regardless of whether axial vessel motion was included. The shape of the wall shear stress waveform and its difference, however, changed dramatically between the stationary and moving vessel cases. The peaks in wall shear stress difference corresponded with large temporal gradients in the combined driving force for the flow.  相似文献   

8.
The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier–Stokes and Continuity equations, where the convective term in the Navier–Stokes equation was changed in the arbitrary Lagrangian–Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress—WSS, WSS spatial gradient—WSSG, oscillatory shear index—OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.  相似文献   

9.
Pulsatile flow in an axisymmetric rigid-walled model of an abdominal aorta aneurysm was analyzed numerically for various aneurysm dilations using physiologically realistic resting waveform at time-averaged Reynolds number of 300 and peak Reynolds number of 1607. Discretization of the governing equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement. Our findings indicate that the velocity fields are significantly affected by non-Newtonian properties in pathologically altered configurations. Non-Newtonian fluid shear stress is found to be greater than Newtonian fluid shear stress during peak systole. Further, the maximum shear stress is found to occur near the distal end of AAA during peak systole. The impact of non-Newtonian blood flow characteristics on pressure compared to Newtonian model is found insignificant under resting conditions. Viscous and inertial forces associated with blood flow are responsible for the changes in the wall that result in thrombus deposition and dilation while rupture of AAA is more likely determined by much larger mechanical stresses imposed by pulsatile pressure on the wall of AAA.  相似文献   

10.
Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from -1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2. At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.16 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2. The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.  相似文献   

11.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

12.
The pulsatile flow in an anatomically realistic compliant human carotid bifurcation was simulated numerically. Pressure and mass flow waveforms in the carotid arteries were obtained from an individual subject using non-invasive techniques. The geometry of the computational model was reconstructed from magnetic resonance angiograms. Maps of time-average wall shear stress, contours of velocity in the flow field as well as wall movement and tensile stress on the arterial wall are all presented. Inconsistent with previous findings from idealised geometry models, flow in the carotid sinus is dominated by a strong helical flow accompanied by a single secondary vortex motion. This type of flow is induced primarily by the asymmetry and curvature of the in vivo geometry. Flow simulations have been carried out under the rigid wall assumption and for the compliant wall, respectively. Comparison of the results demonstrates the quantitative influence of the vessel wall motion. Generally there is a reduction in the magnitude of wall shear stress, with its degree depending on location and phase of the cardiac cycle. The region of slow or reversed flow was greater, in both spatial and temporal terms in the compliant model, but the global characteristics of the flow and stress patterns remain unchanged. The analysis of mechanical stresses on the vessel surface shows a complicated stress field. Stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb. These are also regions of low wall shear stress. The comparison of computed and measured wall movement generally shows good agreement.  相似文献   

13.
The spatial and temporal distributions of wall shear stress (WSS) in prototype vessel geometries of coronary segments are investigated via numerical simulation, and the potential association with vascular disease and specifically atherosclerosis and plaque rupture is discussed. In particular, simulation results of WSS spatio-temporal distributions are presented for pulsatile, non-Newtonian blood flow conditions for: (a) curved pipes with different curvatures, and (b) bifurcating pipes with different branching angles and flow division. The effects of non-Newtonian flow on WSS (compared to Newtonian flow) are found to be small at Reynolds numbers representative of blood flow in coronary arteries. Specific preferential sites of average low WSS (and likely atherogenesis) were found at the outer regions of the bifurcating branches just after the bifurcation, and at the outer-entry and inner-exit flow regions of the curved vessel segment. The drop in WSS was more dramatic at the bifurcating vessel sites (less than 5% of the pre-bifurcation value). These sites were also near rapid gradients of WSS changes in space and time – a fact that increases the risk of rupture of plaque likely to develop at these sites. The time variation of the WSS spatial distributions was very rapid around the start and end of the systolic phase of the cardiac cycle, when strong fluctuations of intravascular pressure were also observed. These rapid and strong changes of WSS and pressure coincide temporally with the greatest flexion and mechanical stresses induced in the vessel wall by myocardial motion (ventricular contraction). The combination of these factors may increase the risk of plaque rupture and thrombus formation at these sites.  相似文献   

14.
Kumar BV  Yamaguchi T  Liu H  Himeno R 《Biorheology》2002,39(3-4):351-357
The aim of this study is to examine the interaction between two mild atherosclerotic proliferations spaced apart by a distance S by analyzing their influence on flow structure, pressure drop and stress field in an arterial vessel under pulsatile flow conditions. This has been achieved numerically by employing a time accurate, cell centered finite volume method in solving the Navier-Stokes equations governing the 3D unsteady flow dynamics in a conceptual model of an multiply constricted arterial vessel. In comparison to the pressure drop across a single stenosis, nearly a 50% increase in the late systolic and early diastolic pressure drops has been observed across the two mild constrictions when they are spaced within a distance of S相似文献   

15.
Simulations of blood flow in natural and artificial conduits usually require large computers for numerical solution of the Navier-Stokes equations. Often, physical insight into the fluid dynamics is lost when the solution is purely numerical. An alternative to solving the most general form of the Navier-Stokes equations is described here, wherein a functional form of the solution is assumed in order to simplify the required computations. The assumed forms for the axial pressure gradient and velocity profile are chosen such that conservation of mass is satisfied for fully established pulsatile flow in a straight, deformable vessel. The resulting equations are cast in finite-difference form and solved explicitly. Results for the limiting cases of rigid wall and zero applied pressure are found to be in good agreement with analytical solutions. Comparison with the experimental results of Klanchar et al. [Circ. Res. 66, 1624-1635 (1990]) also shows good agreement. Application of the model to realistic physiological parameter values provides insight as to the influence of the pulsatile nature of the flow field on wall shear development in the presence of a moving wall boundary. Specifically, the model illustrates the dependence of flow rate and shear rate on the amplitude of the vessel wall motion and the phase difference between the applied pressure difference and the oscillations of the vessel radius. The present model can serve as a useful tool for experimentalists interested in quantifying the magnitude and character of velocity profiles and shearing forces in natural and artificial biologic conduits.  相似文献   

16.
In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered. It is shown that constant wall shear stress in the mother and daughter vessels provides the minimum flow resistance and energy loss of biological flows. Moreover, the effects of different wall shear stresses in the mother and daughter branches, different lengths of daughter branches in the asymmetric bifurcations and non-Newtonian effect of biological fluid flows on the bifurcation angle and the relationship between the diameters of mother and daughter branches are considered. Using numerical simulations for non-Newtonian models such as power law and Carreau models, the effects of optimal bifurcation angle on the pressure drop and flow resistance of blood flow in the symmetric bifurcation are investigated. Numerical simulations show that optimal bifurcation angle decreases the pressure drop and flow resistance especially for bifurcations at large Reynolds number.  相似文献   

17.
Hemodynamic characteristics of blood flow through arterial stenoses are numerically investigated in this work. The blood is assumed as a Newtonian fluid and the pulsatile nature of flow is modeled by using measured values of the flowrate and pressure for the canine femoral artery. An isotropic elastic and incompressible material is assumed for the wall at each axial section, but a non-uniform distribution of the shear modulus in axial direction is used to model the high stiffness of the wall at the stenosis location. Full Navier equations for a thick wall are used as the governing equations for the wall displacements. A continuous grid extending over the flow field and the wall is considered and governing equations are transformed for use in the computational domain. Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously solved using the well-known SIMPLER algorithm. To study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.  相似文献   

18.
This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.  相似文献   

19.
This study looks at blood flow through four different right coronary arteries, which have been reconstructed from bi-plane angiograms. Five non-Newtonian blood models, as well as the usual Newtonian model of blood viscosity, are used to study the wall shear stress in each of these arteries at a particular point in the cardiac cycle. It was found that in the case of steady flow in a given artery, the pattern of wall shear stress is consistent across all models. The magnitude of wall shear stress, however, is influenced by the model used and correlates with graphs of shear stress versus strain for each model. For mid-range velocities of around 0.2 m s(-1) the models are virtually indistinguishable. Local and global non-Newtonian importance factors are introduced, in an attempt to quantify the types of flows where non-Newtonian behaviour is significant. It is concluded that, while the Newtonian model of blood viscosity is a good approximation in regions of mid-range to high shear, it is advisable to use the Generalised Power Law model (which tends to the Newtonian model in those shear ranges in any case) in order to achieve better approximation of wall shear stress at low shear.  相似文献   

20.
The mathematical model of Hung (Tsai and Hung, 1984) is employed to determine the wall shear rate acting on canine carotid arteries perfused in vitro. Model equations for pulsatile flow in a deformable vessel are coupled with experimental data of dynamic pressure drop, flow rate, vessel radius and radial wall motion. Derived quantities, e.g. velocity profiles and wall shear, are obtained for vessels exposed to 'normotensive' hemodynamics, 'hypertension' simulations and perfusions in which the compliance of the vessel wall is deliberately altered. Our results indicate that wall shear varies markedly as a function of the hemodynamic environment. The effects of vessel radius vs flow rate on the development of wall shear are also demonstrated. It is found that convective processes correlate with the magnitude of wall shear in the 'hypertension' simulations. The present findings and complementary published data may explain, at least in part, the variations in vessel wall transport and endothelial cell biology we observe as a function of the hemodynamic environment. For example we have documented that the exposure of canine carotids to 'hypertensive' (vs 'normotensive') hemodynamics is associated with an increased flux of lipoproteins (LDL) into the intima and luminal media. Alternations in wall compliance, on the other hand, profoundly influence endothelial shape, orientation and cytoskeletal array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号