首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotransmitters play an important role in larval metamorphosis in different groups of marine invertebrates. In this work, the role of dopamine and serotonin during metamorphosis of the ascidian Phallusia mammillata larvae was examined. By immunofluorescence experiments, dopamine was localized in some neurons of the central nervous system and in the adhesive papillae of the larvae. Dopamine and serotonin signaling was inhibited by means of antagonists of these neurotransmitters receptors (R(+)-SCH-23390, a D(1) antagonist; clozapine, a D(4) antagonist; WAY-100635, a 5-HT(1A) antagonist) and by sequestering the neurotransmitters with specific antibodies. Moreover, dopamine synthesis was inhibited by exposing 2-cell embryos to alpha-methyl-l-tyrosine. Dopamine depletion, obtained by these different approaches, caused early metamorphosis, while serotonin depletion delayed the onset of metamorphosis. The opposite effects were obtained using agonists of the neurotransmitters: lisuride, a D(2) agonist, inhibited metamorphosis, while DOI hydrochloride and 8-OH-DPAT HBr, two serotonin agonists, promoted it. So, it is possible to suppose that dopamine signaling delayed metamorphosis while serotonin signaling triggers it. We propose a mechanism by which these neurotransmitters may modulate the timing of metamorphosis in larvae.  相似文献   

2.
Hydroid planulae metamorphose in response to an inducing external stimulus, usually a bacterial cue. There is evidence that neurotransmitters participate in the signal transduction pathway of hydroid metamorphosis. Eudendrium racemosum is a colonial hydroid common in the Mediterranean Sea. It lacks the medusa stage and the planulae develop on female colonies during the fertile season. In this work, serotonin (5-HT) was localized in some planula ectodermal cells. Co-localization of serotonin and beta-tubulin suggested that 5-HT was present in sensory nervous cells and in different ectodermal cells. To investigate the role of neurotransmitters in metamorphosis, E. racemosum planulae were treated with serotonin and dopamine and with agonists and antagonists of the corresponding receptors. Serotonin and a serotonin receptor agonist induced metamorphosis, while a 5-HT receptor antagonist inhibited it. Dopamine and all dopaminergic drugs used did not show any significant effect on the onset of metamorphosis. Results from this work showed that 5-HT could stimulate metamorphosis in E. racemosum planulae in the presence of a natural inducer. A mechanism by which this neurotransmitter could act in this phase is proposed.  相似文献   

3.
Serotonin and dopamine are involved in the attachment and metamorphosis of cypris larvae of barnacles. Aromatic L-amino acid decarboxylase (AADC) gene, the product of which catalyzes the synthesis of serotonin and dopamine from L-5-hydroxytryptophan and L-3,4-dihydroxyphenylalanine, respectively, was characterized. A DNA clone containing part of an AADC sequence was obtained from the genomic DNA library of the barnacle, Balanus amphitrite. This clone had four putative exons consisting of 226 amino acids with an identity of 63.2% and a similarity of 92.1% with human AADC. Northern blot analysis showed that AADC mRNA was expressed at all stages of barnacles: naupliar larvae, cypris larvae and adult barnacles. Two inducers of larval attachment and metamorphosis; that is, serotonin and extract of adult barnacles, obviously increased the expression of AADC mRNA at an early cypris larval stage. These results suggest that intracellular biosynthesis of serotonin, or dopamine, or both is at least partly involved in the control of the attachment and metamorphosis of cypris larvae.  相似文献   

4.
We examined the expression of six barnacle cypris larva-specific gene (bcs) cDNAs (bcs-1, -2, -3, -4,- 5, and -6), the bcs genes, by using Northern blot analysis under various conditions that induced or inhibited cypris larval attachment and metamorphosis. Inducers of larval attachment and metamorphosis, such as a neurotransmitter, tended to increase the expression of bcs mRNAs. All inhibitors of larval attachment and metamorphosis, such as G protein-coupled receptor agonists/antagonists, inhibitors of tyrosine kinase-linked receptors and inhibitors of their signal transduction, suppressed the expression of bcs-6 mRNA alone, but affected differentially other bcs genes. These results strongly suggest that the bcs-6 product plays a key role in triggering the attachment and metamorphosis of cypris larvae into juvenile barnacles. The roles of four late bcs genes (bcs-3,-4, -5 and -6) are discussed.  相似文献   

5.
Transdihydrolisuride (terguride), a 9,10-dihydrogenated analogue of the ergot dopamine agonist lisuride, is characterized as partial dopamine receptor agonist at CNS level. This compound was investigated for its effects on peripheral neurotransmission in the attempt to delineate its pharmacological profile. The contractile responses of field-stimulated mouse vas deferens were slightly inhibited by terguride at very high concentrations (10(-5)-10(-2) M); the selective antagonists for alpha 2-adrenergic and dopamine receptors failed to counteract this effect. Terguride was very effective in blocking the inhibitory effects of LY 171555 (selective DA2 agonist), SK&F 38393 (selective DA1 agonist) and clonidine (selective alpha 2 agonist). In no case the antagonism was competitive: the control dose-response curves were not shifted in a parallel and dose-dependent manner. Therefore terguride displays a mixed DA1, DA2 and alpha 2 antagonistic activity.  相似文献   

6.
Settlement behavior of molluscan veliger larvae prior to metamorphosis requires cessation of swimming, accomplished by arrest of prototrochal cilia on the margin of the velum (the larval swimming organ). Ciliary arrest in larvae of gastropods is mediated by an action potential that occurs synchronously across the velum as a consequence of electrical coupling between the prototrochal ciliated cells. We developed a preparation for extracellular recording of such ciliary arrest spikes from intact swimming and crawling veliger larvae of the caenogastropod Crepidula fornicata, using a fine wire electrode. Ciliary arrest spike rates during bouts of substrate crawling were significantly higher than those recorded during preceding swimming periods in larvae that were competent for metamorphosis, but not in precompetent larvae. Spike rates were similar on clean polystyrene substrates, and on substrates that had been coated with a natural cue for metamorphosis (mucus from conspecific adults). We used immunohistochemical methods to localize neuromodulators that might regulate the function of velar cilia. Labeled terminals for serotonin, FMRFamide, and tyrosine hydroxylase (an enzyme for catecholamine synthesis) were located in positions consistent with modulatory effects on the prototrochal ciliated cells. Prototrochal ciliary arrest spike rates and beat frequencies were measured in isolated velar lobes from competent larvae, which were exposed to serotonin, FMRFamide, and dopamine (10?5 mol L?1). Serotonin abolished arrest spiking and increased beat frequency; dopamine also increased beat frequency, and FMRFamide depressed it. Competent larvae tested in a small static water column swam to the top of the column when exposed to serotonin, but occupied lower positions than controls when in the presence of dopamine and FMRFamide. The larval nervous system appears to regulate velar functions that are critical for settlement behavior, and is likely to do so by integrating different sensory modalities in an age‐dependent manner.  相似文献   

7.
m-Chlorophenylpiperazine and m-trifluoromethylphenylpiperazine, two compounds that act as agonists at central serotonin receptors mediating certain neuroendocrine, behavioral and serotonin turnover effects, lacked appreciable agonist activity at serotonin receptors mediating contraction of the rat jugular vein. Instead, these compounds were potent antagonists of serotonin-induced contraction of the jugular vein. Apparently these non-indole compounds affect serotonin receptors in various tissues differently, being agonists in brain but mainly antagonists at some peripheral serotonin receptor sites.  相似文献   

8.
In order to characterize Pecten maximus metamorphosis within a hatchery environment, the relationships existing among the various larval rearing parameters, the biochemical composition of the larvae and metamorphosis have been determined. Metamorphosis levels are correlated with the percentages of double ring larvae, as well as with the larval lipid content. A multiple regression incorporating the percentage of double ring larvae and larval lipid content shows that these two combined parameters explain 50 % of the total metamorphosis variance, with an equal relative importance for each of them. In an attempt to identify other possible endogenous markers, the kinetics of biogenic amines were also examined throughout larval and post-larval development. A steady increase in serotonin and dopamine levels was recorded during larval development while a sudden decrease in both molecules was noted during metamorphosis. It is suggested that these two amines may be used as indicators of larval competence for P. maximus metamorphosis.  相似文献   

9.
J W Kebabian 《Life sciences》1978,23(5):479-483
Two classes of dopamine receptor mechanism are defined according to their association with, or independence from, a dopamine-sensitive adenylyl cyclase. Dopamine receptors unrelated to adenylyl cyclase are designated type alpha. Dopamine receptors linked to adenylyl cyclase are designated type beta. Drugs discriminate between the two receptor mechanisms. The dopaminergic ergots (lisuride, lergotrile and CB-154) and their antagonists (such as metoclopramide) are relatively specific for the alpha-dopaminergic receptor in the anterior pituitary. Other agonists (e.g. apomorphine and dopamine) and antagonists (e.g. antipsychotic phenothiazines and butyrophenones) affect both classes of receptor.  相似文献   

10.
The acinar salivary glands of the cockroach, Periplaneta americana, are innervated by dopaminergic and serotonergic nerve fibers. Serotonin stimulates the secretion of protein-rich saliva, whereas dopamine causes the production of protein-free saliva. This suggests that dopamine acts selectively on ion-transporting peripheral cells within the acini and the duct cells, and that serotonin acts on the protein-producing central cells of the acini. We have investigated the pharmacology of the dopamine-induced secretory activity of the salivary gland of Periplaneta americana by testing several dopamine receptor agonists and antagonists. The effects of dopamine can be mimicked by the non-selective dopamine receptor agonist 6,7-ADTN and, less effectively, by the vertebrate D1 receptor-selective agonist chloro-APB. The vertebrate D1 receptor-selective agonist SKF 38393 and vertebrate D2 receptor-selective agonist R(-)-TNPA were ineffective. R(+)-Lisuride induces a secretory response with a slower onset and a lower maximal response compared with dopamine-induced secretion. However, lisuride-stimulated glands continue secreting saliva, even after lisuride-washout. Dopamine-induced secretions can be blocked by the vertebrate dopamine receptor antagonists cis(Z)-flupenthixol, chlorpromazine, and S(+)-butaclamol. Our pharmacological data do not unequivocally indicate whether the dopamine receptors on the Periplaneta salivary glands belong to the D1 or D2 subfamily of dopamine receptors, but we can confirm that the pharmacology of invertebrate dopamine receptors is remarkably different from that of their vertebrate counterparts.  相似文献   

11.
Dopamine receptors previously identified in corpora allata (CA) of Manduca sexta last instars on the basis of dopamine effects on JH (juvenile hormone)/JH acid biosynthesis and cyclic AMP (cAMP) accumulation, were characterized pharmacologically. For this study, a broad spectrum of agonists or antagonists of D1, D2, D3 or D4 dopamine receptors, together with the dopamine metabolite N-acetyl-dopamine, other neurotransmitters and their agonists/antagonists, were tested for their effects on gland activity and cAMP production. The lack of effect of other neurotransmitters supports the specificity of the effect of dopamine and the dopamine specificity of the receptors. Only the D2 receptor antagonist spiperone had a potent effect on JH biosynthesis and cAMP formation by CA taken on day 0 of the last stadium, when dopamine stimulates both activities and thus appears to be acting via a D1-like receptor. Several other D2 receptor antagonists, and D1, D2/D1 and D4,3/D2 receptor antagonists were less effective. Thus, the D1-like receptor of the Manduca CA appears to be distinct pharmacologically from vertebrate D1 receptors. By contrast, a number of D2 agonists/antagonists had a significant effect on JH acid biosynthesis and cAMP production by the CA from day 6 of the last stadium, when dopamine inhibits both activities and thus appears to be acting via a D2-like receptor. Certain D1-specific agonists/antagonists were equally effective. The Manduca D2-like receptor therefore bears some pharmacological resemblance to vertebrate D2 receptors. N-acetyl dopamine acted as a dopamine agonist with day 6 CA, the first identified function for an N-acetylated biogenic amine in insects. Dopamine was found to have the same differential affect on the formation of cAMP in homogenates of day 0 and day 6 brains as it did with CA, and in the same concentration range. Dopamine receptor agonists/antagonists affecting cAMP formation by day 0 and day 6 CA homogenates had similar effects with brain homogenates. By contrast, dopamine only stimulated cAMP formation by homogenates of day 0 and day 6 abdominal or ventral nerve cord. These results suggest that D1- and D2-like dopamine receptors of Manduca are regionally as well as temporally localized.  相似文献   

12.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

13.
J Arnt 《Life sciences》1985,37(8):717-723
The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.  相似文献   

14.
Alpha-adrenergic receptors on human platelets.   总被引:4,自引:0,他引:4  
[3H] dihydroergocyrptine, an α-adrenergic antagonist, binds specifically to sites on human platelet membranes. Prostaglandin E1 (PGE1) stimulates the production of cyclic AMP (cAMP) in human platelets. Alpha-adrenergic agonists, 1-epinephrine and 1-norepinephrine, and antagonists, phentolamine, phenoxybenzamine, and dihydroergocyrptine inhibit the binding of [3H] dihydroergocryptine. The α-adrenergic agonists inhibit PGE1-stimulated cAMP production and the α-adrenergic antagonists phentolamine and dihydroergocryptine reverse this inhibition. The β-adrenergic agonist 1-isoproterenol and the β-adrenergic antagonists d1-propranolol and 1-alprenolol do not significantly alter binding or PGE1-stimulated cAMP production. Clonidine, dopamine, and serotonin inhibit binding, but clonidine and dopamine are weak inhibitors of PGE1-stimulated cAMP production, and serotonin is without effect. Tyramine, an amine without direct adrenergic activity fails to inhibit binding. Alpha-adrenergic agonists decrease the apparent affinity of a PGE1-receptor activating cAMP production. The inhibition of PGE1-stimulated cAMP production is a physiological measure of α-adrenergic agonist binding to the α-receptor.  相似文献   

15.
The effects of serotonin, dopamine and noradrenaline on RNA synthesis, estimated by the incorporation of [3H]orotic acid, were studied on regenerating fragments of planarians. Serotonin was observed to inhibit, whereas dopamine and noradrenaline had no apparent action. These three neurohormones and their antagonists were also tested on planarian cell cultures, using [3H]-uridine as tracer. RNA synthesis, inhibited by serotonin, methiothepine (serotonin antagonist) and fluphenazine (dopamine antagonist), was shown to be restored by dopamine. The effects of serotonin, dopamine and their antagonists, are discussed in relation to the adenylate cyclase system.  相似文献   

16.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

17.
In a continuing study of nicotine-induced mechanisms in brain areas associated with cognitive processes, the effects of cholinergic and dopaminergic antagonists on nicotine-induced changes in dopamine, norepinephrine, and serotonin were examined. These effects were measured via in vivo microdialysis in the dorsal and ventral hippocampus and in the prefrontal and medial temporal cortex of conscious, freely moving, adult male rats. Nicotine (0.3 mg/kg, free base) was administered subcutaneously and the antagonists were infused locally via the microdialysis probe. Nicotine alone induced an increase of dopamine and its metabolites in all areas, an increase of norepinephrine in the cortex, and an increase of the norepinephrine metabolite 4–hydroxy-3-methoxy-phenylglycol in all areas. Serotonin was decreased in the hippocampus and increased in the cortex. Nicotine-induced dopamine increases were inhibited by nicotinic (mecamylamine 100 μM, methyllycaconitine 500 μM), muscarinic (atropine 100 μM), and dopaminergic D1 (SCH23390 100 μM) and D2 (eticlopride 100 μM) antagonists, in the hippocampal and cortical areas. In the hippocampal areas, these antagonists had less significant effect on norepinephrine and serotonin. However, in the cortical areas, all antagonists inhibited the nicotine-induced increase of serotonin to varying degrees; and some, primarily nicotinic and dopamine D1 antagonists, inhibited the induced increase of norepinephrine. In the hippocampal and cortical areas, the mechanisms of nicotine-induced dopamine increase seem to be similar, but the mechanisms seem to be different for noradrenergic and serotonergic systems, as shown by the fact that nicotine induces no change in norepinephrine and a decrease in serotonin in the hippocampus, while it induces an increase in both in the cortex. Nicotine-induced dopamine release seems to be mediated, in part locally, by nicotinic and muscarinic receptors on dopaminergic cells. In contrast, nicotine’s effect on norepinephrine and serotonin is at least partially mediated by initial changes at other than local sites, and through different receptors. Thus, the effects of nicotine and the mechanisms involved differ for different neurotransmitters and in different brain areas.  相似文献   

18.
Effects of D2 dopamine receptor selective agonists: quinpirole (0.1, 0.3 and 1 mg/kg, i. p.), pergolide (0.3 mg/kg, i. p.), lisuride (0.1 mg/kg, i. p.) and antagonist raclopride (1.2 mg/kg, i. p.) on the metabolism and synthesis of DA and serotonin in the rat brain striatum and nucleus accumbens after GBL treatment were studied. GBL as well as dopamine D2 receptor selective drugs were shown not only to change neurochemical parameters of dopaminergic brain systems, but also to modulate serotonin metabolism without affecting its biosynthesis.  相似文献   

19.
Octopamine- and dopamine-sensitive adenylate cyclases were studied in the brain of Locusta migratoria during its metamorphosis. In the adult brain the effects of octopamine and dopamine on adenylate cyclase were additive, suggesting the presence of separate populations of adenylate cyclase-linked receptors for octopamine and dopamine. There are no separate receptors for noradrenaline. Octopamine stimulates adenylate cyclase in both adult and larval brain; however, in adult brain octopamine is more potent than in larval brain. Dopamine stimulates adenylate cyclase activity only in adult brain. The sensitivity of adenylate cyclase to octopamine changes during the development of the animal. Phentolamine and cyproheptadine are potent antagonists of octopamine-stimulated adenylate cyclase, while propranolol has a weak effect. No cytosol factor which would modulate either basal or octopamine-stimulated adenylate cyclase was found. The effect of GTP and octopamine on adenylate cyclase was synergistic in adult brain but not in larval brain, while the effect of GppNHp and octopamine was synergistic in both adult and larval brains.  相似文献   

20.
5-Hydroxytryptamine (5-HT), epinephrine, and dopamine strongly stimulated the motor activity of larval Spirometra mansonoides. By contrast, a cholinomimetic agent, arecoline, paralyzed the worms. There was some pharmacological specificity among the agonists but not with various antagonists. Acetylcholinesterase activity was present in both larval and adult Spirometra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号