首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Methyl glycoside of the tetrasaccharide GlcNAc(beta 1-2)Rha(alpha 1-2)Rha(alpha 1-3)Rha, which represents a repeating unit of the basic chain of Shigella flexneri O-antigenic polysaccharides, was synthesized using acylated monosaccharide synthons. A dimer of the repeating unit, octasaccharide [GlcNAc(beta 1-2)Rha(alpha 1-2) Rha(alpha 1-3)Rha(alpha 1-3)]2-OMe was obtained by TrClO4-catalyzed condensation of two tetrasaccharide blocks.  相似文献   

2.
The specific polysaccharide was obtained from the lipopolysaccharide of Shigella newcastle by mild acid hydrolysis and further purified by permeation chromatography on Sephadex G-50. It was found to consist of L-rhamnose, 2-acetamido-2-deoxy-D-galactose, D-galacturonic acid residues and O-acetyl groups in the molar ratios of 2:1:1:1. On the basis of 1H and 13C nuclear magnetic resonance spectroscopy, methylation analysis, partial acid hydrolysis, Smith degradation, and chromium trioxide oxidation, the following structure can be assigned to the repeating oligosaccharide unit of the polysaccharide:-4)DGalA(beta 1-3)DGalNAc-(beta 1-2)LAc3Rha(alpha 1-2)LRha(alpha 1-, where GalA = galacturonic acid. GalNAc = N-acetylgalactosamine, Ac3Rha = 3-O-acetylrhamnose. The structural and immunochemical data presented prove that Sh. newcastle lipopolysaccharide belongs to a 'non-classical' type of somatic antigens with acidic O-specific polysaccharide chains.  相似文献   

3.
A fragment of Micrococcus lysodeikticus cell-wall obtained by cetylpyridinium recipitation from the nondialyzable portion of the degradation products of egg-white lysozyme was studied by the periodate oxidation and methylation procedures. The fragment consists of a polysaccharide chain composed of about 40 repeating (1 leads to 4)-O-(2-acetamido-2-deoxy-beta-D-mannopyranosyluronic acid)-(1 leads to 6)-O-(alpha-D-glucopyranosyl) residues with D-glucopyranosyl residues at both ends. The alpha-D-glucopyranose residue at the reducing end is linked to a phosphate group that is also linked to C-6 of a 2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl residue of a peptidoglycan chain composed of four repeating (1 leads to 4)-O-[2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl] residues. The peptidoglycan chain has, as nonreducing group, a 2-acetamido-2-deoxy-beta-D-glucopyranosyl group, and, as reducing residue, a 2-acetamido-3-O-(D-1-carboxytheyl)-2-deoxy-beta-D-glucose residue.  相似文献   

4.
W Wang  F Kong 《Carbohydrate research》1999,315(1-2):128-136
A highly efficient and convergent synthesis of a hexasaccharide, which is a dimer of the repeating unit of the antigen O2 polysaccharide of Stenotrophomonas maltophilia, was achieved via coupling of 2,3,4-tri-O-acetyl-alpha-L-xylopyranosyl bromide with the tetrasaccharide, allyl 4-O-{3-O-[4-O-(3,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O-ben zoyl -alpha-D-mannopyranosyl]-4-benzoyl-alpha-L-rhamnopyranosyl}-2,3,6-tri-O- benzoyl-alpha-D-mannopyranoside (18) by the Koenigs-Knorr method followed by deacylation. Compound 18 was readily prepared from the coupling of the disaccharide trichloroacetimidate, 4-O-(2-O-acetyl-3,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O- benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (8) with the disaccharide acceptor, allyl 4-O-(2-O-acetyl-4-O-benzoyl-alpha-L-rhamnopyranosyl)-2,3,6-tri-O-benzoyl - alpha-D-mannopyranoside (16), and both 8 and 16 were prepared via the trichloroacetimidate method from simple starting materials. The sole use of acyl protecting groups substantially simplified protection and deprotection, and the allyl group at the reducing end of allyl 4-O-{2-O-[2,3,4-tri-O-acetyl-beta-L-xylopyranosyl]-3-O-[4-O-(2-O-(2,3,4- tri-O-acetyl-beta-L-xylopyranosyl)-3,4-di-O-benzoyl-alpha-L-rhamnopyrano syl) -2,3,6-tri-O-benzoyl-alpha-D-mannopyranosyl]-4-O-benzoyl-alpha- L-rhamnopyranosyl}-2,3,6-tri-O-benzoyl-alpha-D-mannopyranoside 19 allowed further chemical transformation.  相似文献   

5.
Synthesis of a tritylated tetrasaccharide 1,2-O-(1-cyano) ethylidene derivative is described by glycosylation of 3,6-di-O-benzoyl-4-O-(2,4,6-tri-O-benzoyl-beta- D-galactopyranosyl)-1,2-O-[1-(exo-cyano)ethylidene]-alpha-D- glucopyranose with 6-O-acetyl-3-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl-beta- D-galactopyranosyl)-2-deozy-2-phthalimido-D-glucopyranosyl. bromide followed by selective deacetylation and tritylation.  相似文献   

6.
Bioactive sucrose esters from Bidens parviflora   总被引:4,自引:0,他引:4  
Wang N  Yao X  Ishii R  Kitanaka S 《Phytochemistry》2003,62(5):741-746
An investigation on Bidens parviflora led to the isolation of three sucrose esters and a substituted truxillate. Their structures were elucidated as (6-O-(E)-p-coumaroyl)-beta-D-fructofuranosyl-(2-->1)-alpha-D-glucopyranoside, (6-O-(E)-p-coumaroyl)-beta-D-fructofuranosyl-(2-->1)-(6-O-(E)-p-coumaroyl)-alpha-D-glucopyranoside II, 6,6'-sucrose ester of (1alpha,2alpha,3beta,4beta)-3,4-bis(4-hydroxyphenyl)-1,2-cyclobutanedicarboxylic acid, dimethyl ester of (1alpha,2alpha,3alpha,4alpha)-2,4-bis(3,4-dihydroxyphenyl)-1,3-cyclobutanedicarboxylic acid on the basis of spectral and chemical evidence. These compounds were subjected to the following bioassays: the histamine release inhibition of rat mast cells induced by antigen-antibody reaction and the inhibitory activity of PGE(2) production by macrophages.  相似文献   

7.
D-Galactose was converted into the glycosylating agents 4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alpha-D-glucopyranosyl chloride (11) and the methyl beta-D-thiopyranoside 19. Condensation of 11 with 2,5-diazido-1,6-di-O-benzoyl-2,5-di-deoxy-L-iditol in the presence of mercury salts gave 24% of 2,5-diazido-3-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-1,6-di-O-benzoyl-2,5-dideoxy-L-iditol. Methyl trifluoromethanesulfonate-promoted glycosylation of 1,3-diazido-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulit ol with 19 in the presence of 2,6-di-tert-butyl-4-methylpyridine gave 1,3-diazido-4-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulitol (42), whereas, in the absence of base, migration of the O-isopropylidene group occurred, affording 1,3-diazido-6-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-4,5-O-isopropylidene-D-gulitol in addition to 42.  相似文献   

8.
Acid hydrolysis of the antigenic lipopolysaccharide from Shigella boydii type 7 afforded a specific polysaccharide composed of 2-acetamido-2-deoxy-D-glucose, D-glucose, D-galactose, 5-acetamido-3,5,7,9-tetradeoxy-7-[(3R)-3-hydroxybutyramido]-L- glycero-L-manno-nonulosonic acid (NonN2A) and acetic acid residues in the 1:1:2:1:1 ratio. From the results of methylation analysis, hydrogen fluoride solvolysis and Smith degradation, the structure of the repeating unit of the specific polysaccharide was dedused as: -2) Galf (beta 1-3)GlcNAcp (alpha 1-8)NonN2A (beta 2-6) Galp (alpha 1-6) Glcp (alpha 1-4 increases Ac. The 13C NMR spectrum of the polysaccharide was interpreted, and the spectral data fully confirmed the structure of the polysaccharide repeating unit.  相似文献   

9.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

10.
Comparison of inhibitory properties of several synthetic oligosaccharides related to Sh. flexneri O-specific polysaccharides, namely Glc alpha 1-3Rha alpha 1-OMe, Glc alpha 1-3Rha alpha 1-2Rha alpha 1-OMe, Rha alpha 1-2(Glc alpha 1-3)Rha alpha 1-OMe, GlcNAc beta 1-2(Glc alpha 1-3)Rha alpha 1-OMe, and GlcNAc beta 1-2(Glc alpha 1-3) Rha alpha 1-2Rha alpha 1-OMe, using passive haemagglutination reaction demonstrated the tetrasaccharide to possess the highest activity in V; 7,8-anti-7,8 immune system. Among the oligosaccharides under study, only Rha alpha 1-2(Glc alpha 1-3)Rha alpha 1-OMe exhibited moderate anti-V activity.  相似文献   

11.
The structure of a neutral polysaccharide isolated by degradation with dilute acetic acid of the lipopolysaccharide (LPS) of P. mirabilis O24 has been determined recently [E. Literacka et al., FEBS Lett., 456 (1999) 227-231]. Further studies of this LPS using alkaline degradation and hydrolysis at pH 4.5 showed that the polysaccharide chain includes an acetal-linked pyruvic acid residue, which is removed completely during delipidation with acetic acid. A revision using 1H and 13C NMR spectroscopy and methylation analysis resulted in determination of the following full structure of the repeating unit of the O-specific polysaccharide: carbohydrate sequence [see text] where D-Gal3,4(S-Pyr) is 3,4-O-[(S)-1-carboxyethylidene]-D-galactose.  相似文献   

12.
A partial purified polymerase from S. anatum was used for the synthesis of polysaccharide [-6) [14C]Man(beta 1-4)Rha(alpha 1-3)Gal(alpha 1-]n and its analogues containing D-glucose residue instead of D-galactose or D-mannose. Structures of these polymers were confirmed by methylation analysis and radioimmunochemical tests.  相似文献   

13.
The fate of terminal (nonreducing) alpha-D-glucopyranosyluronic groups under reductive cleavage conditions was investigated by using the Klebsiella K2 (strain NCTC-418) capsular polysaccharide. Treatment of the fully methylated polysaccharide (1) with triethylsilane and a mixture of trimethylsilyl methanesulfonate (Me3SiOSO2CH3) and boron trifluoride etherate (BF3.Et2O) as the catalyst, resulted in complete cleavage of all glycosidic linkages to yield the expected products, namely 3-O-acetyl-1,5-anhydro-2,4,6-tri-O-methyl-D-glucitol (2), 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-mannitol (3), 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-glucitol (4), and methyl 2,6-anhydro-3,4,5-tri-O-methyl-L-gulonate. Treatment of 1 with trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) as the catalyst resulted in incomplete cleavage of the glycosidic linkage of the methylated D-glucopyranosyluronic group, to yield 4-O-acetyl-1,5-anhydro-2,6-di-O-methyl- 3-O-(methyl2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate )-D-mannitol (9). Reductive cleavage of 1 in the presence of BF3.Et2O resulted in incomplete cleavage of all glycosidic linkages and gave rise to all four dimers (including 9) that could be formed from a tetrasaccharide repeating unit. The proposed structures of these dimers are based upon their composition, as established by chemical ionization mass spectrometry and by the reported structure of the polysaccharide. A small proportion of 1,5-anhydro-2,4,6-tri-O-methyl-3-O-(methyl 2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate)-D-mannitol (12) was also detected in the products of the BF3.Et2O-catalyzed reductive cleavage. The presence of 12 is chemical evidence for the phase of the tetrasaccharide repeating unit in the polysaccharide. The reductive cleavage of 1 was also accomplished after reduction of its ester groups with lithium aluminum hydride. Complete cleavage of all glycosidic linkages was observed when either Me3SiOSO2CF3 or Me3SiOSO2CH3-BF3.Et2O was used to catalyze reductive cleavage, and anhydroalditols 2, 3, 4, and 6-O-acetyl-1,5-anhydro-2,3,4-tri-O-methyl-D-glucitol were produced, as expected.  相似文献   

14.
Tri-O-acetyl-5-thio-D-ribopyranosyl bromide was converted into 3,4-di-O-benzoyl-1,5-anhydro-5-thio-D-erythro-pent-1-enitol (3,4-di-O-benzoyl-5-thio-D-ribal), the azidonitration of which afforded an unstable mixture of 2-azido-3,4-di-O-benzoyl-2-deoxy-1-O-nitro-5-thio-D-pentopyranoside++ + isomers. This was converted without separation into the corresponding 1-O-acetyl derivatives from which an alpha,beta anomeric mixture of the 1-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-5-thio-D-arabinopyranose+ ++ isomers could be isolated in high yield. Glycosidation of this mixture with 4-cyano- or 4-nitrobenzenethiol, using trimethylsilyl triflate or boron trifluoride etherate, respectively, as promoters gave the corresponding D anomers exclusively. Zemplén debenzoylation afforded 4-cyanophenyl as well as 4-nitrophenyl 2-azido-2-deoxy-1,5-dithio-beta-D-arabinopyranoside, respectively. When 1-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-5-thio-D-lyxopyranose was used as glycosyl donor only the corresponding 1 anomers, i.e., 4-cyanophenyl as well as 4-nitrophenyl 2-azido-2-deoxy-1,5-dithio-beta-D-lyxopyranosides, could be isolated after Zemplén debenzoylation in high yield. All four 1,5-dithioglycosides possess significant oral antithrombotic activity.  相似文献   

15.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

16.
p-Nitrophenyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl bromide, the product deprotected, and the disaccharide glycoside converted into p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-4-O-beta-D-galactopyranosyl-beta- D-glucopyranoside. p-Nitrophenyl 3-O-benzoyl-4,6-di-O-benzylidene-alpha-D-mannopyranoside was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl bromide, and the product was deprotected, to yield p-nitrophenyl 2-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-alpha-D-mannopyranoside. p-Nitrophenyl 2-acetamido-3,4-di-O-benzoyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide, and, after reduction, trifluoroacetylation, and deprotection, p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-6-O-alpha-L-fucopyranosyl-beta-D-glucopyranoside was obtained.  相似文献   

17.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

18.
Two flavonol glycosides from seeds of Camellia sinensis.   总被引:5,自引:0,他引:5  
Two novel flavonol triglycosides, camelliaside A and B, have been isolated from seeds of Camellia sinensis. The structures were determined to be kaempferol 3-O-[2-O-beta-D- galactopyranosyl-6-O-alpha-L-rhamnopyranosyl]-beta-D-glucopyranoside and kaempferol 3-O-[2-O-beta- D-xylopyranosyl-6-O-alpha-L-rhamnopyranosyl]-beta-D-glucopyranoside on the basis of spectroscopic, chemical and enzymatic studies. These types of interglycosidic linkages, Gal(1----2)[Rha(1----6)]Glc and Xyl(1----2)[Rha(1----6)]Glc, have not been reported previously in flavone and flavonol glycosides.  相似文献   

19.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15.  相似文献   

20.
Coupling of the sodium salt of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose, -beta-D-galactopyranose, O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6-tri-O- acetyl- 1-thio-beta-D-glucopyranose, or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto -2- nonulopyranosylonate)-(2----3)-O-(2,3-di-O-acetyl-6-O-bezoyl -beta-D- galactopyranosyl)-(1----4)-3-O-acetyl-2,6-di-O-benzoyl-1-thio-beta-D- glucopyranose, which were prepared from the corresponding 1-S-acetates, 1, 3, 6, and 9, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-tolylsulfonyl)-4-oc tadecene-1,3-diol (12) derived by tosylation of 11, gave the corresponding beta-thioglycosides 13, 17, 21, and 25, respectively in good yield. The beta-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号