首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the actin cytoskeleton state in Asterias amurensis oocytes within 30 min after the 1-methyladenine-induced maturation until the germinal vesicle breakdown. The total amount of actin remained unchanged during oocyte maturation. In immature oocytes, the major part of actin is not a part of filaments, but in the presence of 1-methyladenine massive actin polymerization began already within 20 min. Electron immunocytochemistry methods demonstrated joint localization of actin and αi-protein in the cytoplasm. They were redistributed from the cortex to the cytoplasm in the presence of 1-methyladenine. A possible involvement of actin cytoskeleton in transmembrane transduction of the hormonal signal at the postreceptor stages is discussed.  相似文献   

2.
Fully grown oocytes of the starfish Asterina pectinifera, undergo breakdown of their germinal vesicles and subsequent maturation on treatment with 1-methyladenine (1-MeAde). However, oocytes treated with seawater containing 0.010% Triton X-100 lost the capacity to respond to 1-MeAde and their germinal vesicles remained intact. These decapacitated oocytes once again ac-quired the capacity to respond to l-Me Ade when they were incubated in sea water containing the extract of fully grown oocytes treated with Triton X-100, from which the Triton X-100 was removed after extraction by means of Bio-Beads SM-2 (TXE). Recovery of the capacity was also observed after washing such TXE-treated oocytes with sea water. These results suggest that some factor (probably 1-MeAde receptor or its fragment), extracted from the oocyte surface (plasma mem-brane) by nonionic detergent, was reconstituted on the oocyte surface so that the capacity of the oocytes to respond to 1-MeAde was recovered. The factor was heat-stable and resistant to treat-ment with proteolytic enzymes.  相似文献   

3.
We studied the actin cytoskeleton state in Asterias amurensis oocytes within 30 min after the 1-methyladenine-induced maturation until the germinal vesicle breakdown. The total amount of actin remained unchanged during oocyte maturation. In immature oocytes, the major part of actin is not a part of filaments, but in the presence of 1-methyladenine massive actin polymerization began already within 20 min. Electron immunocytochemistry methods demonstrated joint localization of actin and alpha-protein in the cytoplasm. They were redistributed from the cortex to the cytoplasm in the presence of 1-methyladenine. A possible involvement of actin cytoskeleton in transmembrane transduction of the hormonal signal at the postreceptor stages is discussed.  相似文献   

4.
Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP3-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP3, despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.  相似文献   

5.
Starfish oocyte maturation is triggered by a natural hormone, 1-methyladenine (1-MeAde), produced in the follicle cells, or artificially by dithiothreitol (DTT). These substances act on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), which induces germinal vesicle breakdown (GVBD) and subsequent processes of meiotic maturation. Further, MPF is amplified in immature oocytes that have received the injection of MPF. In this paper the effect of leupeptin and antipain, protease inhibitors of microbial origin, on starfish oocyte maturation was investigated. The protease inhibitors were found to inhibit 1-MeAde-induced maturation when they were applied externally or injected into oocytes. DTT-induced maturation was also inhibited by injection of leupeptin. However, leupeptin did not inhibit the maturation-inducing action of MPF or MPF amplification. These results show that the protease inhibitors suppress the production of MPF by 1-MeAde or DTT, suggesting that some endogenous protease(s) acts in the production of MPF.  相似文献   

6.
The resumption of meiosis in starfish oocytes is induced by 1-methyladenine (1-MeA), which is produced by ovarian foilicle cells under the influence of a gonad-stimulating substance (GSS). It has been reported that the 1-MeA produced is newly synthesized via a process of methylation, rather than being pre-stored within follicle cells or a breakdown product of some 1-MeA-containing substance. The present study examined a possible substrate for 1-MeA biosynthesis stored in follicle cells of the starfish Asterina pectinifera . Analyses using high-performance liquid chromatography indicated a large source of ATP among the adenine-related compounds in these follicle cells. When follicle cells were incubated in seawater in the presence of GSS, 1-MeA production was stimulated significantly. GSS also caused a reduction in intracellular levels of ATP. There was no change in the levels of either ADP or AMP. The amount of ATP consumed under the influence of GSS was similar to the amount of 1-MeA produced. Methionine and selenomethionine enhanced both 1-MeA production and ATP consumption by GSS in follicle cells. In contrast, ethionine and selenoethionine, competitive inhibitors of methionine, inhibited these processes. These results suggest that ATP is a possible substrate in the biosynthesis of 1-MeA by starfish ovarian follicle cells.  相似文献   

7.
Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.  相似文献   

8.
The stimulation of oocyte maturation by 1-methyladenine in starfish, and by a steroid in frogs, has been proposed to involve G-protein-coupled receptors. To examine whether activation of receptors linked to G(i) or G(z) was sufficient to cause oocyte maturation, we expressed mammalian G(i)- and G(z)-linked receptors in starfish and frog oocytes. Application of the corresponding agonists caused meiosis to resume in the starfish but not the frog oocytes. We confirmed that the receptors were effectively expressed in the frog oocytes by using a chimeric G-protein, G(qi), that converts input from G(i)- and G(z)-linked receptors to a G(q) output and results in a contraction of the oocyte's pigment. These results argue against G(i) or G(z) functioning to cause maturation in frog oocytes. Consistently, maturation-inducing steroids did not cause pigment contraction in frog oocytes expressing G(qi), and G(z) protein was not detectable in frog oocytes. For starfish oocytes, however, our results support the conclusion that G(i) functions in 1-methyladenine signaling and suggest the possibility of using frog oocyte pigment contraction as an assay to identify the 1-methyladenine receptor. To test this concept, we coexpressed G(qi) and a starfish adenosine receptor in frog oocytes and showed that applying adenosine caused pigment contraction.  相似文献   

9.
Development of calcium release mechanisms during starfish oocyte maturation   总被引:7,自引:1,他引:7  
In response to the maturation-inducing hormone 1-methyladenine, starfish oocytes acquire increased sensitivity to sperm and inositol trisphosphate (InsP3), stimuli that cause a release of calcium from intracellular stores and a rise in intracellular free calcium. In the immature oocyte, the calcium release in response to 10 sperm entries is less than that seen with a single sperm entry in the mature egg. Likewise, the sensitivity to injected InsP3 is less in the immature oocyte. Approximately 100 times as much InsP3 is required to obtain the same calcium release in an immature oocyte as in a mature egg. However, with saturating amounts of InsP3, immature oocytes and mature eggs release comparable amounts of calcium. These results indicate that although calcium stores are well-developed in the immature oocyte, mechanisms for releasing the calcium develop fully only during oocyte maturation.  相似文献   

10.
1. Properties of the membrane-bound form adenylate cyclase in Asterias amuensis oocytes have been investigated.2. Mn2+ activated enzyme activity of starfish oocytes.3. Starfish eyclase is activated by guanine nucleotides, fluoride, forskolin and cholera toxin, thus demonstrating the presence of regulatory subunity (G-protein).4. It was suggested that the starfish membrane oocytes have receptor-like structures which are sensitive to dopamine and ones related with adenylate cyclase.  相似文献   

11.
Two starfish oocytes with a 12 min time difference in the maturation phase were fused together with electric pulses to make a heteroplasmic conjugate. The starfish used were Asterina pectinifera. The emergence of the first meiotic spindle and the extrusion of the polar bodies in the conjugate were timed. Under polarization microscopy two meiotic spindles emerged with a time difference of 10-11 min, which is close to the time difference in the maturation phase between the original oocytes before fusion. In contrast, subsequent formation of the first two polar bodies occurred successively with a short time lag of 1-3 min between them. Times for the formation of both polar bodies were midway between the anticipated times for polar body formation in respective non-fused control oocytes. Thus, in one nucleus the meiotic division was delayed, while in another nucleus it was accelerated, in a single heteroplasmic conjugate. These two sets of observations indicate the presence of a certain control system that regulates progression of the cell cycle at a point during the period from the entry into metaphase through to late anaphase of meiosis I in starfish oocytes. This type of cell cycle control in starfish oocytes is obviously distinct from the currently accepted view of the cell cycle control by the spindle assembly checkpoint that monitors unattached kinetochores of mitotic chromosomes.  相似文献   

12.
13.
14.
Studies have been made on local and total motor reactions of the starfish to stimuli of different modalities. It is suggested that differences in the pattern of papillae excitation and those in total reactions to salt, mechanical stimulation and changes in the intensity of illumination are associated with structural and functional heterogeneity of receptors and afferent pathways in the lower regular layer of the nervous plexus. The ability of segment motoneurons to change the direction of tube feet movement in absence of influences from the nervous ring was demonstrated. Possible scheme of control of pedicellar movement evoked by external stimulation is discussed.  相似文献   

15.
Acrosome reaction-inducing substance (ARIS) in the jelly coat of starfish eggs is a highly sulfated proteoglycan-like molecule of an apparent molecular size over 10(4) kDa and plays a pivotal role in the induction of acrosome reaction in homologous spermatozoa. It is known in Asterias amurensis that ARIS binds to a restricted area of the anterior portion of sperm head, and that a glycan fragment of ARIS, named Fragment 1, consisting of 10 repeats or so of a pentasaccharide unit retains the biological activity of ARIS to an appreciable extent. In this report, we have shown the binding of Fragment 1, a relatively small pure glycan fragment of ARIS, to the putative ARIS receptor on the sperm surface by three independent methods. First, the specific binding of P-ARIS to isolated sperm membranes was monitored in real-time by using a surface plasmon resonance detector, namely a Biacore sensor system. The specific and quantitative binding of Fragment 1 to the intact sperm and to isolated sperm membranes was similarly monitored. Secondly, the binding of 125I-labeled Fragment 1 to the intact sperm was stoichiometrically measured, for which we had developed a unique procedure for radioiodination of saccharide chains. It is found that Fragment 1 competes with P-ARIS for the binding to ARIS-receptor, suggesting that Fragment 1 is a useful ligand in the search for ARIS receptor protein(s). Thirdly, the putative receptor molecules were specifically labeled by using Fragment 1 as a ligand for photoaffinity crosslink technique. Taking these results into account, we conclude that starfish sperm have the ARIS receptor, which consists most probably of 50 to 60 kDa proteins, of reasonably high affinity (for Fragment 1, Kd = 15 microM, Bmax = 8.4 x 10(4) per cell).  相似文献   

16.
The pattern of protein synthesis in oocytes of starfish Marthasterias glacialis changes during 1-methyladenine-induced meiotic maturation. One of the newly synthesized proteins, a major 54-kDa polypeptide, was synthesized continuously after activation but was destroyed abruptly just before appearance of the polar bodies at each meiotic division. This protein thus resembles the cyclin proteins identified in cleaving sea urchin and clam embryos. RNA extracted from oocytes before and after maturation encoded virtually identical polypeptides when translated in the reticulocyte lysate. However, there was poor correspondence between the in vitro translation products and the labelling pattern of intact cells. There was no exact in vitro counterpart to the in vivo-labelled cyclin. Instead, a major polypeptide of 52 kDa was seen which appears to be a precursor of the 54-kDa form of cyclin. The 52-kDa polypeptide was identified as cyclin by hybrid arrest of translation. Cyclin mRNA is ot translated to a significant extent before oocyte activation and is present in oocytes as nonadenylated form. It becomes polyadenylated when the oocytes mature. This behavior is also seen in the case of the mRNA for the small subunit of ribonucleotide reductase, another abundant maternal mRNA whose translation is activated at maturation.  相似文献   

17.
Carboxypeptidase B was purified from the pyloric ceca of the starfish Asterias amurensis. The final enzyme preparation was nearly homogeneous in polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 34,000. The optimum pH and temperature of the enzyme for hydrolysis of benzoyl-glycyl-L-arginine were at approximately pH 7.5 and 55 degrees C, respectively. The enzyme was unstable at above 50 degrees C and at below pH 5.0. The enzyme was activated by Co(2+), but was inhibited by EDTA and Hg(2+). The N-terminal amino acid sequence of A. amurensis carboxypeptidase B was ASFDYNVYHSYQEIMNWITN.  相似文献   

18.
Mammalian oocyte meiosis encompasses two rounds of asymmetric divisions to generate a totipotent haploid egg and, as by-products, two small polar bodies. Two intracellular events, asymmetric spindle positioning and cortical polarization, are critical to such asymmetric divisions. Actin but not microtubule cytoskeleton has been known to be directly involved in both events. Recent work has revealed a positive feedback loop between chromosome-mediated cortical activation and the Arp2/3-orchestrated cytoplasmic streaming that moves chromosomes. This feedback loop not only maintains meiotic II spindle position during metaphase II arrest, but also brings about symmetry breaking during meiosis I. Prior to an Arp2/3-dependent phase of fast movement, meiotic I spindle experiences a slow and non-directional first phase of migration driven by a pushing force from Fmn2-mediated actin polymerization. In addition to illustrating these molecular mechanisms, mathematical simulations are presented to elucidate mechanical properties of actin-dependent force generation in this system.  相似文献   

19.
Induction of starfish oocyte maturation by disulfide-reducing agents   总被引:4,自引:0,他引:4  
Oocyte maturation was found to be induced by disulfide-reducing agents such as dithiothreitol (DTT) and 2,3-dimercapto-1-propanol (BAL) in the starfish, Asterina pectinifera. The follicular envelopes around the oocytes broke and retracted into small clumps of cells on treatment with these reagents, as in the case of 1-methyladenine. Upon insemination, fertilizable eggs obtained by treatment with DTT formed a tight fertilization membrane and underwent cleavage. Such eggs developed normally to bipinnaria larvae. Cysteine and glutathione-SH had no effect in inducing oocyte maturation. On the other hand, pretreatment with sulfhydryl reagents such as p-chloromercurybenzoate (PCMB), iodoacetamide (IAM) and N-ethylmaleimide (NEM) completely suppressed 1-methyladenine-induced oocyte maturation. This inhibitory effect of sulfhydryl reagents on oocyte maturation was diminished by subsequent treatment with DTT or BAL with or without 1-methyladenine. Pretreatment with o-iodosobenzoate failed to inhibit 1-methyladenine-induced oocyte maturation.  相似文献   

20.
Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号