首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane lipids are increasingly being recognised as active participants in biological events. The precise roles that individual lipids or global properties of the lipid bilayer play in the folding of membrane proteins remain to be elucidated, Here, we find a significant effect of phosphatidylglycerol (PG) on the folding of a trimeric α helical membrane protein from Escherichia coli diacylglycerol kinase. Both the rate and the yield of folding are increased by increasing the amount of PG in lipid vesicles. Moreover, there is a direct correlation between the increase in yield and the increase in rate; thus, folding becomes more efficient in terms of speed and productivity. This effect of PG seems to be a specific requirement for this lipid, rather than a charge effect. We also find an effect of single-chain lyso lipids in decreasing the rate and yield of folding. We compare this to our previous work in which lyso lipids increased the rate and yield of another membrane protein, bacteriorhodopsin. The contrasting effect of lyso lipids on the two proteins can be explained by the different folding reaction mechanisms and key folding steps involved. Our findings provide information on the lipid determinants of membrane protein folding.  相似文献   

2.
3.
Li X  Schick M 《Biophysical journal》2001,80(4):1703-1711
The design of vesicles that become unstable at an easily tuned value of pH is of great interest for targeted drug delivery. We present a microscopic theory for two forms of such vesicles. A model of lipids introduced by us previously is applied to a system of ionizable anionic lipid and permanently charged cationic lipid. We calculate the pH at which the lamellar phase becomes unstable with respect to an inverted hexagonal one, a value that depends continuously on the system composition. Identifying this instability with that displayed by unilamellar vesicles undergoing fusion, we obtain very good agreement with the recent experimental data of Hafez, Ansell, and Cullis, (2000, Biophys. J. 79:1438-1446) on the pH at which fusion occurs versus vesicle composition. We explicate the mechanism in terms of the role of the counterions. This understanding suggests that a system of a neutral, nonlamellar-forming lipid stabilized by an anionic lipid would serve equally well for preparing tunable, pH-sensitive vesicles. Our calculations confirm this. Further, we show that both forms of vesicle have the desirable feature of exhibiting a regime in which the pH at instability is a rapidly varying function of the vesicle composition.  相似文献   

4.
Factor Xa catalyzed prothrombin activation is strongly stimulated by the presence of negatively charged membranes plus calcium ions. Here we report experiments in which we determined the prothrombin-converting activity of phosphatidylcholine (PC) membranes that contain varying amounts of different anionic lipids, viz., phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylmethanol (MePA), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidyl-beta-lactate (PLac), sulfatides (SF), sodium dodecyl sulfate (SDS), and oleic acid. All anionic lipids tested were able to accelerate factor Xa catalyzed prothrombin activation, in both the absence and presence of the protein cofactor Va. This shows that the prothrombin-converting activity of negatively charged membranes is not strictly dependent on the presence of a phosphate group but that lipids which contain a carboxyl or sulfate moiety are also able to promote the formation of a functionally active prothrombinase complex. In the absence of factor Va, the prothrombin-converting activity of membranes with MePA, PG, PE, PLac, SF, or SDS was strongly inhibited at high ionic strength, while the activity of PS- and PA-containing membranes was hardly affected by ionic strength variation. This suggests that in the case of the ionic strength sensitive lipids electrostatic forces play an important role in the formation of the membrane-bound prothrombinase complex. For PS and to a lesser extent for PA we propose that the formation of a coordinated complex (chelate complex) with Ca2+ as central ion and ligands provided by the gamma-carboxyglutamic acid residues of prothrombin and factor Xa and the polar head group of phospholipids is the major driving force in protein-membrane association. Our data indicate that the anionic lipids used in this study can be useful tools for further investigation of the molecular interactions that play a role in the assembly of a membrane-bound prothrombinase complex. Membranes that were solely composed of PC can also considerably enhance prothrombin activation in the presence of factor Va. This activity of PC is only observed on membranes which are composed of PC that contains unsaturated hydrocarbon side chains. Membranes prepared from phosphocholine-containing lipids with saturated hydrocarbon side chains such as dimyristoyl-PC, dipalmitoyl-PC, distearoyl-PC, and dioctadecylglycerophosphocholine hardly accelerated prothrombin activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The role of membrane lipids in regulation of integrin functions   总被引:2,自引:0,他引:2  
Recent evidence suggests that the biochemical and physical organization of lipid molecules in the plasma membrane can affect integrin-mediated cellular functions. The nature and mechanism of integrin-lipid interactions are unknown, but it is clear that they play specific roles in modulating the properties of integrins and integrin-associated proteins. A better knowledge of integrin functions, especially in the lipid milieu of plasma membranes, is necessary for the understanding of the phenomena that are regulated by integrins.  相似文献   

7.
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.  相似文献   

8.
There is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids.  相似文献   

9.
The violaxanthin cycle describes the reversible conversion of violaxanthin to zeaxanthin via the intermediate antheraxanthin. This light-dependent xanthophyll conversion is essential for the adaptation of plants and algae to different light conditions and allows a reversible switch of photosynthetic light-harvesting complexes between a light-harvesting state under low light and a dissipative state under high light. The photoprotective functions of zeaxanthin have been intensively studied during the last decade, but much less attention has been directed to the mechanism and regulation of xanthophyll conversion. In this review, an overview is given on recent progress in the understanding of the role of (i) xanthophyll binding by antenna proteins and of (ii) the lipid properties of the thylakoid membrane in the regulation of xanthophyll conversion. The consequences of these findings for the mechanism and regulation of xanthophyll conversion in the thylakoid membrane will be discussed.  相似文献   

10.
11.
The metabolism of phosphatidylglycerol and lysyl phosphatidylglycerol was studied in Staphylococcus aureus under four conditions: growing at pH 7.0 and 5.2, and not growing (resting) at pH 7.0 and 5.2. Measurements of the amounts of phosphatidylglycerol and lysyl phosphatidylglycerol, as well as labeling and pulsechase experiments, revealed that the phosphate group of the former and the lysyl group of the latter were in a state of active turnover. A marked decline in the cellular level of phosphatidylglycerol observed when cells were resting at pH 5.2 was found to be caused by both a decrease in synthesis and an increase in catabolism. The level of lysyl phosphatidylglycerol was found to be relatively constant under the four incubation conditions, although the lysyl moiety was in a state of turnover. Experiments designed to test the possible role of lysyl phosphatidylglycerol as a lysyl group donor in biosynthetic processes or in lysine transport were negative; no evidence to support the hypothesis that lysyl phosphatidylglycerol serves as an intermediate was obtained.  相似文献   

12.
The effect of dolichol and dolichyl phosphate on fusion between large unilamellar vesicles comprised of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was studied using a fluorescence resonance energy transfer assay. The influence of dolichyl phosphate on the transbilayer movement of DOPC in multilamellar vesicles (MLV) and large unilamellar vesicles (LUV) composed of DOPC and DOPE (1:2) was investigated by using the phosphatidylcholine-specific transfer protein. 31P-NMR and freeze-fracture electron microscopy were employed to study the macroscopic organization of DOPC and DOPE containing model membranes in the absence or presence of dolichyl phosphate. The results indicate that both dolichol and dolichyl phosphate enhance vesicle fusion in a comparable and concentration-dependent way; the amount of exchangeable PC from MLVs is increased by dolichyl phosphate, probably as a result of fusion processes; dolichyl phosphate destabilizes the bilayer organization in MLVs comprised of DOPE and DOPC, resulting in the formation of hexagonal (HII) phase and 'lipidic' particles.  相似文献   

13.
Phosphorylated derivatives of the phospholipid phosphatidylinositol, or phosphoinositides, are implicated in many aspects of cell function. Binding of phosphoinositides that are localized within cell membranes to soluble protein ligands allows spatially selective regulation at the cytoplasm-membrane interface. Recently, studies that relate phosphoinositide production to membrane domains are converging with those that show effects of these lipids on the assembly of cellular actin, and are therefore linking membrane and cytoskeletal structures in new ways.  相似文献   

14.
15.
Enzyme function and membrane lipids   总被引:1,自引:0,他引:1  
  相似文献   

16.
Matti Nuutinen  Ilmo Hassinen 《BBA》1981,637(3):481-489
The role of extracellular Pi and transmembrane fluxes across the sarcolemma in the regulation of cellular respiration was studied in isolated Langendorff-perfused rat hearts. Extracellular phosphate did not significantly affect the oxygen consumption or cellular phosphorylation potential of the myocardium. K+-induced arrest was used to change the mechanical work load of the heart. Arresting the heart caused a rapid decrease in the unidirectional efflux of phosphate determined by in vitro prelabelling of the intracellular phosphate compounds with 32P and determining the specific radioactivity of the γ-P of ATP, and the label appearance into the perfusion medium. At normal or elevated perfusate phosphate concentration there was a fairly slow net uptake of phosphate. The decrease in phosphate fluxes upon the K+-induced arrest was probably not due to a decrease in the transmembrane Na+ or K+ gradients because a further increase in the perfusate K+ concentration caused an increase in the K+ efflux to the levels observed in contracting hearts. The use of higher than normal concentrations of phosphate necessitated a lowering of the extracellular Ca2+ concentration, which caused a diminution of the oxygen consumption, accompanied by mitochondrial flavoprotein oxidation in the heart. This finding suggested that the extracellular Ca2+ concentration may be involved in the substrate level regulation of mitochondrial metabolism.  相似文献   

17.
Cell membranes provide an environment for several types of molecular processes and we are attempting to mimic the cell membranes' environment on a chromatography solid support. Chromatography solid supports utilizing lecithin as the bonded phase were synthesized and the HPLC behavior of hydrophilic peptides evaluated. A diC14 lecithin containing a terminal carboxy group on the C2 fatty acid chain was amidated with the surface amines of Nucleosil-300 (7NH2) silica particles. Based on elemental analysis, lecithin was coupled to Nucleosil-300 (7NH2) at a surface density near that of lecithin found in biological membranes and this novel chromatographic support material is denoted as Nucleosil-lecithin, the prototype immobilized artificial membrane. Infrared difference spectra of Nucleosil-lecithin minus Nucleosil-300 (7NH2) clearly showed amide I (1653.1 cm-1) and amide II (1550.9 cm-1) bands, giving direct spectroscopic evidence for the amide linkage. Spectral deconvolution resolved two peaks for the amide I band, and three peaks for the amide II band. This demonstrates lecithin interchain amide hydrogen bonding and/or hydrogen bonds between the lecithin amide link and unreacted silica surface amines. Nucleosil-lecithin as a solid phase mimics membranes and can be used to study the interactions of biomolecules with membranes. Our primary objective is to develop HPLC methods for studying the interaction between cell membranes and peptide sequences found near the interfaces of cell membranes. A frequency distribution of amino acids bracketing approximately 400 transmembrane peptide sequences showed Cys to be the least frequently occurring amino acid at this putative interfacial membrane region. Hydrophilic peptide analogs bearing Cys were used as model compounds to test Nucleosil-lecithin solid supports. Small peptides, six to eight amino acids in length, containing Cys bind approximately 2X tighter to Nucleosil-lecithin compared to identical peptides without the Cys residue. Thus, Cys at the interface of cells may stabilize protein-lipid interactions.  相似文献   

18.
19.
W Li  T H Haines 《Biochemistry》1986,25(23):7477-7483
A general procedure for the preparation of large unilamellar vesicles of selected sizes has been developed. The procedure consists of dissolving the lipid in organic solvent, washing with mild acid, removing the solvent, adding salt (0.15 M KCl) solution, and adjusting the pH (raising it to about pH 10 and lowering it immediately to pH 7.55). The procedure takes less than 30 min. The resulting unilamellar vesicles are of a single size with a rather low standard deviation. The sizes of these preparations range between 150 and 1000 nm in diameter. Sizes and polydispersities were measured to within 1-2% by photon correlation spectroscopy. Vesicle size varies with the phospholipid structure, the composition of the phospholipid mixture, the ionic strength of the medium, the alkyl chain composition, the cholesterol content of the phospholipid mixture, and the timing of the pH adjustment procedure. Uniform preparations of vesicles have been obtained from the dioleoyl esters of phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylserine, from diphytanyl ethers of glycolipid sulfate, phosphatidylglycerol, phosphatidylglycerol phosphate, and phosphatidylglycerol sulfate, from bovine liver phosphatidylinositol, from Escherichia coli phosphatidylethanolamine, from membrane lipid extracts from E. coli and Holabacterium cutirubrum, and from dodecanesulfonate-alkanol mixtures and free oleic acid. The preparation of unilamellar vesicles from oleic acid is novel, and the size range is 600-3000 nm; the preparations are relatively uniform. Vesicles of phospholipids in which sucrose and trehalose replace salt as the impermeant do not differ significantly from those prepared in pentaerythritol.  相似文献   

20.
Bipolar tetraether lipids (BTL) are abundant in archaea and can be chemically synthesized. The structures of BTL are distinctly different from the lipids found in bacteria and eukaryotes. In aqueous solution, BTL can form extraordinarily stable liposomes with different sizes, lamellarities and membrane packing densities. BTL liposomes can serve as membrane models for understanding the structure-function relationship of the plasma membrane in thermoacidophiles and can be used for technological applications. This article reviews the separation, characterization and structures of BTL as well as the physical properties and technological applications of BTL liposomes. One of the structural features of BTL is the presence of cyclopentane rings in the lipid hydrocarbon core. Archaea use the cyclopentane ring as an adaptation strategy to cope with high growth temperature. Special attention of this article is focused on how the number of cyclopentane rings varies with environmental factors and affects membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号