首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trans splicing of mRNA precursors in vitro   总被引:32,自引:0,他引:32  
M M Konarska  R A Padgett  P A Sharp 《Cell》1985,42(1):165-171
Two exon segments from two separate RNA molecules can be joined in a trans splicing process. In trans splicing reactions, an RNA molecule containing an exon, a 5' splice site, and adjacent intron sequences was mixed with an RNA molecule containing an exon, a 3' splice site, and adjacent intron sequences. The efficiency of trans splicing of these two RNAs increased if the two termini of the intervening sequences were paired in a short RNA duplex. However, trans splicing of two RNA molecules with no significant complementarity was also observed. These results strongly suggest that significant secondary structures within intervening sequences could affect the splicing of flanking exons. Similarly, RNAs that are complementary to segments within the intervening sequences could potentially regulate the selection of splice sites. Finally, some organisms might use trans splicing to distribute a single exon to many different mRNAs.  相似文献   

2.
3.
The spliced leader RNAs of both trypanosomes and nematodes can form similar secondary structures where the trans-splice donor site is involved in intramolecular base pairing with the spliced leader sequence. It has been proposed that this base pairing could serve to activate autonomously the SL RNA splice donor site. Here, we have examined exon requirements for trans-splicing in a nematode cell free system. Complete disruption of secondary structure interactions at and around the trans-splice donor site did not affect the ability of the SL RNA to function in trans-splicing. In addition, the highly conserved 22 nt sequence could be productively replaced by artificial exons ranging in size from 2 to 246 nucleotides. These results reinforce the view that the 'intron' portion of the SL RNA functions as an independent Sm snRNP whose role is to deliver exon sequences to the trans-spliceosome.  相似文献   

4.
5.
Experimental evidence for RNA trans-splicing in mammalian cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Eul  M Graessmann    A Graessmann 《The EMBO journal》1995,14(13):3226-3235
  相似文献   

6.
7.
8.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   

9.
Pre-mRNA structure impacts many cellular processes, including splicing in genes associated with disease. The contemporary paradigm of RNA structure prediction is biased toward secondary structures that occur within short ranges of pre-mRNA, although long-range base-pairings are known to be at least as important. Recently, we developed an efficient method for detecting conserved RNA structures on the genome-wide scale, one that does not require multiple sequence alignments and works equally well for the detection of local and long-range base-pairings. Using an enhanced method that detects base-pairings at all possible combinations of splice sites within each gene, we now report RNA structures that could be involved in the regulation of splicing in mammals. Statistically, we demonstrate strong association between the occurrence of conserved RNA structures and alternative splicing, where local RNA structures are generally more frequent at alternative donor splice sites, while long-range structures are more associated with weak alternative acceptor splice sites. As an example, we validated the RNA structure in the human SF1 gene using minigenes in the HEK293 cell line. Point mutations that disrupted the base-pairing of two complementary boxes between exons 9 and 10 of this gene altered the splicing pattern, while the compensatory mutations that reestablished the base-pairing reverted splicing to that of the wild-type. There is statistical evidence for a Dscam-like class of mammalian genes, in which mutually exclusive RNA structures control mutually exclusive alternative splicing. In sum, we propose that long-range base-pairings carry an important, yet unconsidered part of the splicing code, and that, even by modest estimates, there must be thousands of such potentially regulatory structures conserved throughout the evolutionary history of mammals.  相似文献   

10.
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.  相似文献   

11.
Complete structure of the gene for human keratin 18   总被引:11,自引:0,他引:11  
D A Kulesh  R G Oshima 《Genomics》1989,4(3):339-347
  相似文献   

12.
13.
14.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

15.
S Aho  V Tate    H Boedtker 《Nucleic acids research》1984,12(15):6117-6125
During the fine structural analysis of the 5' end of the 38 kb chicken pro alpha 2(I) collagen gene, we failed to locate an exon, only 11 bp in size, which had been predicted from the DNA sequence analysis of a cDNA clone complementary to the 5' end of the pro alpha 2(I) collagen mRNA (1). We know report the location of this 11 bp exon, exon 2, at the 5' end of a 180 bp Pst I fragment, 1900 bp 3' to exon 1 and 600 bp 5' to exon 3. Its sequence, ATGTGAGTGAG, is highly unusual in that it contains two overlapping consensus donor splice sequences. Moreover, it is flanked by two overlapping donor splice sequences but only one of the four splice sequences is actually spliced (1). The first half of intron 1 also has an unusual sequence: it is 68% GC, contains 88 CpG dinucleotides and 11 Hpa II sites. The second half is more like other intron sequences in the collagen gene with a GC content of 41%, 19 CpG, and no Hpa II sites. However it contains two sequences with 7 and 9 bp homology to the 14 bp SV40 enhancer core sequence. It is suggested that some part of intron 1 may be involved in regulation.  相似文献   

16.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

17.
The fibroblast growth factor receptor 2 gene contains a pair of mutually exclusive alternative exons, one of which (K-SAM) is spliced specifically in epithelial cells. We have described previously (F. Del Gatto and R. Breathnach, Mol. Cell. Biol. 15:4825-4834, 1995) some elements controlling K-SAM exon splicing, namely weak exon splice sites, an exon-repressing sequence, and an intron-activating sequence. We identify here two additional sequences in the intron downstream from the K-SAM exon which activate splicing of the exon. The first sequence (intron-activating sequence 2 [IAS2]) lies 168 to 186 nucleotides downstream from the exon's 5' splice site. The second sequence (intron-activating sequence 3 [IAS3]) lies 933 to 1,052 nucleotides downstream from the exon's 5' splice site. IAS3 is a complex region composed of several parts, one of which (nucleotides 963 to 983) can potentially form an RNA secondary structure with IAS2. This structure is composed of two stems separated by an asymmetric bulge. Mutations which disrupt either stem decrease activation, while compensatory mutations which reestablish the stem restore activation, either completely or partially, depending on the mutation. We present a model for K-SAM exon splicing involving the intervention of multiple, interdependent pre-mRNA sequence elements.  相似文献   

18.
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies.  相似文献   

19.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号