首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The function of articular cartilage is to support and distribute loads and to provide lubrication in the diarthrodial joints. Cartilage function is described by proper mechanical and rheological properties, strain and depth-dependent, which are not completely assessed. Unconfined and confined compression are commonly used to evaluate the Young's modulus (E) and the aggregate modulus (H(A)), respectively. The Poisson's ratio (nu) can be calculated indirectly from the equilibrium compression data, or using the biphasic indentation technique; it has recently been optically evaluated by using video microscopy during unconfined compression. The transient response of articular cartilage during confined compression depends on its permeability k; a constant value of k can be easily identified by a simple analytical model of confined compression tests, whereas more complex models or direct measurements (permeation tests) are needed to study the permeability dependence on deformation. A poroelastic finite element model of articular cartilage was developed for this purpose. The elastic parameters (E,nu) of the model were evaluated performing unconfined compression creep tests on human articular cartilage disks, whereas k was identified from the confined test response. Our combined experimental and computational method can be used to identify the parameters that define the permeability dependence on deformation, as a function of depth from articular surface.  相似文献   

2.
3.
AIM: Reconstruction of bone defects due to malignant tumors can be realized by several methods. Up to now, two methods, irradiation and autoclaving, are available for extracorporeally devitalizing resected tumor-bearing osteochondral segments. Previous investigations have shown that human normal and tumor cells in culture were irreversibly impaired when subjected to extracorporeal high hydrostatic pressure (HHP) of 350 MPa. The aim of this study was to examine the biomechanical and immunohistochemical properties of cartilage after exposure to HHP MATERIALS AND METHODS: Osteochondral segments of bovine femoral condyles were exposed to pressure of 300 and 600 MPa (n=20 each). Biomechanical and biological properties of untreated and treated segments were evaluated by repetitive ball indention testing and immunohistochemical labelling aggrecan, link protein and collagen II. The contralateral segments served as untreated control. RESULTS: No significant alterations concerning stiffness and relaxation of osteochondral segments even after 600 MPa were observed. Immunohistochemically, staining was positive in all cases and no differences in the labeling pattern of proteoglycanes were observed between untreated and HHP-treated specimens. CONCLUSION: These findings give hope that HHP eventually will be used as a new gentle way of treating resected cartilage and bone without alteration of biomechanical properties to inactivate tumor cells in order to allow autologous reimplantation.  相似文献   

4.
This study aims to quantify the biomechanical properties of murine temporomandibular joint (TMJ) articular disc and condyle cartilage using AFM-nanoindentation. For skeletally mature, 3-month old mice, the surface of condyle cartilage was found to be significantly stiffer (306 ± 84 kPa, mean ± 95% CI) than those of the superior (85 ± 23 kPa) and inferior (45 ± 12 kPa) sides of the articular disc. On the disc surface, significant heterogeneity was also detected across multiple anatomical sites, with the posterior end being the stiffest and central region being the softest. Using SEM, this study also found that the surfaces of disc are composed of anteroposteriorly oriented collagen fibers, which are sporadically covered by thinner random fibrils. Such fibrous nature results in both an F-D3/2 indentation response, which is a typical Hertzian response for soft continuum tissue under a spherical tip, and a linear F-D response, which is typical for fibrous tissues, further signifying the high degree of tissue heterogeneity. In comparison, the surface of condyle cartilage is dominated by thinner, randomly oriented collagen fibrils, leading to Hertzian-dominated indentation responses. As the first biomechanical study of murine TMJ, this work will provide a basis for future investigations of TMJ tissue development and osteoarthritis in various murine TMJ models.  相似文献   

5.
Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.  相似文献   

6.
Viscoelastic properties of human articular cartilage   总被引:6,自引:0,他引:6  
  相似文献   

7.
8.
We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.  相似文献   

9.
The thermodynamic parameters which define transport of nonelectrolytes through bovine articular cartilage membranes were evaluated. H3HO, glucose and sucrose were used as permeants. These solutes permeate more readily through the upper layers (near the articular surface) than through the denser deeper layers approaching bone. Cartilage is similar in many respects to a swollen cellulose gel. Viscous-flow contributes importantly to transprot within cartilage thus greatly enhancing the movement of nutrients.  相似文献   

10.
Wear properties of articular cartilage in vitro   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
Mechano-acoustic and elastographic techniques may provide quantitative means for the in vivo diagnostics of articular cartilage. These techniques assume that sound speed does not change during tissue loading. As articular cartilage shows volumetric changes during compression, acoustic properties of cartilage may change affecting the validity of mechano-acoustic measurements. In this study, we examined the ultrasound propagation through human, bovine and porcine articular cartilage during stress-relaxation in unconfined compression. The time of flight (TOF) technique with known cartilage thickness (true sound speed) as well as in situ calibration method [Suh, Youn, Fu, J. Biomech. 34 (2001), 1347-1353] were used for the determination of sound speed. Ultrasound speed and attenuation decreased in articular cartilage during ramp compression, but returned towards the level of original values during relaxation. Variations in ultrasound speed induced an error in strain and compressive moduli provided that constant ultrasound speed and time-of-flight data was used to determine the tissue thickness. Highest errors in strain (-11.8 +/- 12.0%) and dynamic modulus (15.4 +/- 17.9%) were recorded in bovine cartilage. TOF and in situ calibration methods yielded different results for changes in sound speed during compression. We speculate that the variations in acoustic properties in loaded cartilage are related to rearrangement of the interstitial matrix, especially to that of collagen fibers. In human cartilage the changes, are, however relatively small and, according to the numerical simulations, mechano-acoustic techniques that assume constant acoustic properties for the cartilage will not be significantly impaired by this phenomenon.  相似文献   

14.
Wu WT  Lyu SR  Hsieh WH 《Cryobiology》2005,51(3):330-338
In order to successfully cryopreserve articular cartilage chondrocytes, it is important to characterize their osmotic response during the cryopreservation process, as the ice forms and the solutes concentrate. In this study, experimental work was undertaken to determine the osmotic parameters of articular cartilage chondrocytes. The osmotically inactive volume of articular cartilage chondrocytes was determined to be 44% of the isotonic volume. The membrane hydraulic conductivity parameters for water were determined by fitting a theoretical water transport model to the experimentally obtained volumetric shrinkage data; the membrane hydraulic conductivity parameter L(Pg) was found to be 0.0633 microm/min/atm, and the activation energy E, 8.23 kcal/mol. The simulated cooling process, using the osmotic parameters obtained in this study, suggests a cooling rate of 80 degrees C/min for the cryopreservation of the articular cartilage chondrocytes of hogs. The data obtained in this study could serve as a starting point for those interested in cryopreservation of chondrocytes from articular cartilage in other species in which there is clinical interest and there are no parameters for prediction of responses.  相似文献   

15.
The purpose of the present study was to develop a model to simulate the articular cartilage growth in an intact knee model with a metal implant replacing a degenerated portion of the femoral cartilage. The human knee joint was approximated with a simplified axisymmetric shape of the femoral condyle along with the cartilage, meniscus and bones. Two individually growing constituents (proteoglycans and collagen) bound to solid matrix were considered in the solid phase of the cartilage. The cartilage behavior was modeled with a nonlinear biphasic porohyperelastic material model, and meniscus with a transversely isotropic linear biphasic poroelastic material model. Two criteria (permeation and shear), both driven by mechanical loading, were considered to trigger the growth in the solid constituents. Mechanical loading with sixty heavy cycles was considered to represent daily walking activity. The growth algorithm was implemented for 90 days after implantation. The results from simulations show that both cartilage layers were more stimulated near the implant which lead to more growth of the cartilage near the defect. The method developed in the present work could be a powerful technique if more accurate material data and growth laws were available.  相似文献   

16.
17.
18.
The material properties of articular cartilage in the rabbit tibial plateau were determined using biphasic indentation creep tests. Cartilage specimens from matched-pair hind limbs of rabbits approximately 4 months of age and greater than 12 months of age were tested on two locations within each compartment using a custom built materials testing apparatus. A three-way ANOVA was used to determine the effect of leg, compartment, and test location on the material properties (aggregate modulus, permeability, and Poisson's ratio) and thickness of the cartilage for each set of specimens. While no differences were observed in cartilage properties between the left and right legs, differences between compartments were found in each set of specimens. For cartilage from the adolescent group, values for aggregate modulus were 40% less in the medial compartment compared to the lateral compartment, while values for permeability and thickness were greater in the medial compartment compared to the lateral compartment (57% and 30%, respectively). Values for Poisson's ratio were 19% less in the medial compartment compared to the lateral compartment. There was also a strong trend for thickness to differ between test locations. Similar findings were observed for cartilage from the mature group with values for permeability and thickness being greater in the medial compartment compared to the lateral compartment (66% and 34%, respectively). Values for Poisson's ratio were 22% less in the medial compartment compared to the lateral compartment.  相似文献   

19.
Determining the depth dependence of the shear properties of articular cartilage is essential for understanding the structure-function relation in this tissue. Here, we measured spatial variations in the shear modulus G of bovine articular cartilage using a novel technique that combines shear testing, confocal imaging and force measurement. We found that G varied by up to two orders of magnitude across a single sample, exhibited a global minimum 50-250 microm below the articular surface in a region just below the superficial zone and was roughly constant at depths > 1000 microm (the "plateau region"). For plateau strains gamma(plateau) approximately 0.75% and overall compressive strains epsilon approximately 5%, G(min) and G(plateau) were approximately 70 and approximately 650 kPa, respectively. In addition, we found that the shear modulus profile depended strongly on the applied shear and axial strains. The greatest change in G occurred at the global minimum where the tissue was highly nonlinear, stiffening under increased shear strain, and weakening under increased compressive strain. Our results can be explained through a simple thought model describing the observed nonlinear behavior in terms of localized buckling of collagen fibers and suggest that compression may decrease the vulnerability of articular cartilage to shear-induced damage by lowering the effective strain on individual collagen fibrils.  相似文献   

20.
An analytical stereophotogrammetry (SPG) technique has been developed based upon some of the pioneering work of Selvik [Ph.D. thesis, University of Lund, Sweden (1974)] and Huiskes and coworkers [J. Biomechanics 18, 559-570 (1985)], and represents a fundamental step in the construction of biomechanical models of diarthrodial joints. Using this technique, the precise three-dimensional topography of the cartilage surfaces of various diarthrodial joints has been obtained. The system presented in this paper delivers an accuracy of 90 microns in the least favorable conditions with 95% coverage using the same calibration method as Huiskes et al. (1985). In addition, a method has been developed, using SPG, to quantitatively map the cartilage thickness over the entire articular surface of a joint with a precision of 134 microns (95% coverage). In the present study, our SPG system has been used to quantify the topography, including surface area, of the articular surfaces of the patella, distal femur, tibial plateau, and menisci of the human knee. Furthermore, examples of cartilage thickness maps and corresponding thickness data including coefficient of variation, minimum, maximum, and mean cartilage thickness are also provided for the cartilage surfaces of the knee. These maps illustrate significant variations over the joint surfaces which are important in the determination of the stresses and strains within the cartilage during diarthrodial joint function. In addition, these cartilage surface topographies and thickness data are essential for the development of anatomically accurate finite element models of diarthrodial joints.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号