首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨慢病毒载体介导人肿瘤细胞RNA干扰的影响因素。方法 以乏氧诱导因子-1α(Hypoxia-inducible factor-1α, HIF-1α)和乏氧诱导因子-1β(Hypoxia-inducible factor-1β, HIF-1β)基因为靶基因,采用Invitrogen公司的BLOCK-iT Lentiviral RNAi Expression System生产表达靶基因shRNA的慢病毒载体,转导Hela、SPCA1和A549,采用定量RT-PCR技术检测靶基因mRNA表达水平。结果 用此系统生产慢病毒,每一10cm培养皿可收获6.3×1010个病毒颗粒。浓度为2×1010copies/ml的Lenti6-HIF1α和Lenti6-HIF1β转导SPCA1、A549和Hela细胞的功能滴度分别为:1.8×106TU/ml、1.2×106TU/ml、1.75×106TU/ml和1.76×106TU/ml、1.21×106TU/ml和1.79×106TU/ml。延长病毒的吸附时间可以提高转导效率, 8小时以内转导效率与吸附时间呈正比,12小时开始进入平台期。1/4、1/2、1、2、4、8倍MOI的Lenti6-HIF1α病毒转导SPCA1和Hela细胞48小时后,RNAi效果与病毒量呈正相比。用筛选的转导细胞证实,RNAi长期效果与细胞类型无关,但与shRNA表达结构整合到靶细胞基因组的拷贝数呈正相关。结论 慢病毒载体介导人肿瘤细胞RNA干扰,短期基因抑制效果取决于细胞类型、病毒量和病毒的吸附时间,稳定基因沉默效果与病毒整合到靶细胞基因组的拷贝数密切相关。  相似文献   

2.
Liver-directed gene therapy has the potential for treatment of numerous inherited diseases affecting metabolic functions. The aim of this study was to evaluate gene expression in hepatocytes using feline immunodeficiency virus-based lentiviral vectors, which may be potentially safer than those based on human immunodeficiency virus. In vitro studies revealed that gene expression was stable for up to 24 days post-transduction and integration into the host cell genome was suggested by Alu PCR and Southern blot analyses. Systemic in vivo administration of viral particles by the hydrodynamics method resulted in high levels of gene expression exclusively in the liver for over 7 months whereas injection of plasmid DNA by the same method led to transient expression levels. Our studies suggest that feline immunodeficiency-based lentiviral vectors specifically transduce liver cells and may be used as a novel vehicle of gene delivery for treatment of metabolic disease.  相似文献   

3.
目的研究慢病毒表达载体介导的RNA于扰(RNAi)对大鼠下丘脑细胞中细胞因子信号转导抑制因子3(SOCSB)的抑制作用。方法根据大鼠SOCS3基因(NM053565),用Ambion在线软件选择3个靶序列,设计并合成包含各正反义靶序列的互补单链寡核苷酸,与经BamHI和XhoI酶切后的慢病毒载体质粒pRNA-1enti-GFP连接产生pRNA-Lenti-SOCS3-GFP慢病毒重组质粒,与慢病毒包装混合物共转染293T细胞,包装产生慢病毒,收集病毒上清,采取逐孔稀释滴度法测定病毒滴度,然后转染大鼠下丘脑细胞,通过荧光显微镜观察细胞转染情况,利用荧光实时定量PCR方法检测RNAi组(siRNAl,siRNA2,siRNA3)、空白细胞组和阴性序列组(siRNA—Negtive)中SOCS3的表达情况。结果将目的序列成功连接到载体上,并经测序分析证实载体构建成功。系列稀释法检测慢病毒悬液的滴度为1.0×10^10TU/L。荧光实时定量PCR检测显示慢病毒感染大鼠下丘脑细胞后,与空白细胞组相比,3个RNAi组都有不同程度的抑制SOCS3表达,其中siRNAI组的抑制效果最好,可使SOCS3mRNA表达下调达80%。结论构建的pRNA-Lemi-SOCS3-GFP慢病毒载体可有效地抑制大鼠SOCS3的表达,为以SOCS3基因为靶点的相关疾病的基因治疗研究奠定基础。  相似文献   

4.
5.
Non-human primates (NHPs) are an invaluable resource for the study of genetic regulation of disease mechanisms. The main disadvantage of using NHPs as a preclinical model of human disease is the difficulty of manipulating the monkey genome using conventional gene modifying strategies. Lentiviruses offer the possibility of circumventing this difficulty because they can infect and transduce either dividing or nondividing cells, without producing an immune response. In addition, lentiviruses can permanently integrate into the genome of host cells, and are able to maintain long-term expression. In this article we describe the lentiviral vectors that we use to both express transgenes and suppress expression of endogenous genes via RNA interference (RNAi) in NHPs. We also discuss the safety features of currently available vectors that are especially important when lentiviral vectors are used in a species as closely related to humans as NHPs. Finally, we describe in detail the lentiviral vector production protocol we use and provide examples of how the vector can be employed to target peripheral tissues and the brain.  相似文献   

6.
目的:探讨运用慢病毒载体介导的RNA干扰技术对X-连锁凋亡抑制蛋白(XIAP)的抑制效率及对胰腺癌细胞增殖、凋亡的影响,建立XIAP表达稳定抑制的胰腺癌细胞株.方法:应用pGJCSIL-PUR慢病毒载体构建针对XIAP的ShRNA载体,转染包装细胞293T,收集病毒上清转染胰腺癌细胞系SW1990,经嘌呤霉素(puromycin)筛选并扩大培养得到稳定克隆;实时荧光定量PCR和western-blot免疫印迹检测癌细胞内XIAP的表达:四甲基偶氮唑盐(MTT)比色法检测细胞增殖;caspase3/7活性测定和DAPI染色检测细胞凋亡.结果:成功构建3个XIAP-ShRNA慢病毒栽体(X1、X2、X3)及XIAP表达稳定抑制的胰腺癌细胞株,对XIAP的抑制效率均达70%以上;MTT检测显示X1、X3稳定抑制XIAP后胰腺癌细胞增殖明显减慢,但caspase3/7活性及细胞凋亡并没有明显增加.结论:慢病毒栽体介导的靶向XIAP的RNAi可有效抑制XIAP表达,降低胰腺癌细胞的增殖能力;成功建立的XIAP表达稳定抑制的胰腺癌细胞株为进一步研究打下基础.  相似文献   

7.
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin‐signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector‐based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic‐cell nuclear transfer (SCNT) studies. Sh‐RNA positive cells were screened by puromycin selection. Using real‐time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down‐regulation in sh2 shRNA‐treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin‐targeting siRNA produced endogenously could efficiently down‐regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus‐mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:452–459, 2015  相似文献   

8.
Generation of mammalian cells stably expressing multiple exogenous genes is currently difficult. Here we provide a strategy to facilitate this process. First, a helper vector p2A containing three coding sequences for viral 2A peptides was constructed. Three reporter genes coding for red fluorescent protein (DsRed), firefly luciferase (Fluc) and enhanced green fluorescent protein (EGFP) were then inserted into p2A to form a fusion open reading frame that was subsequently subcloned into a lentiviral vector. After transduction, EGFP-positive 293T cells were selected by fluorescence activated cell sorting. The expression of exogenous genes in selected cells was stable for more than 15 passages, and EGFP-positive cells were over 95%. The efficient cleavages of 2A-peptide mediated polyprotein were also observed and all three reporter proteins were functional. Thus, a stable DsRed/Fluc/EGFP-coexpressing cell line was readily established within a short time. The strategy could be useful for basic research and protein production. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
目的:探讨趋化因子受体7(Chemokine receptor7,CXCR7)的短发夹RNA(a small hairpin Ribonucleic acid,shRNA)慢病毒表达载体对人肝癌细胞HepG2中CXCR7表达的影响.方法:合成4个针对CXCR7靶基因序列的shRNA,分别与Age Ⅰ和EcoRl酶切后的pGCSIL-RFP载体连接,构建CXCR7的shRNA慢病毒表达载体pGCSIL-RFP-CXCR7-shRNA;构建含有CXCR7互补DNA(complementary DNA,cDNA)的真核过表达载体pEGFP-N1-3FLAG-CXCR7,与pGCSIL-RFP-CXCR7-shRNA共转染HEK293T细胞,筛选具有显著敲减作用的CXCR7-shRNA;将具有显著敲减作用的pGCSIL-RFP-CXCR7-shRNA与慢病毒包装质粒共转染人胚肾细胞(Human embryonic kidney cells,HEK293T)产生慢病毒颗粒LV-CXCR7-shRNA,并将纯化的慢病毒颗粒感染人肝癌HepG2细胞,以逆转录聚合酶链反应(RT-PCR)和免疫印迹(Western blot)分别检测CXCR7信使核糖核酸(mRNA)和蛋白的沉默效果.结果:聚合酶链反应(Polymerasechain reaction,PCR)鉴定及测序结果表明成功构建4个CXCR7的shRNA慢病毒表达载体,并筛选出具有显著敲减作用的pGCSIL-RFP-CXCR7-shRNA2;包装含有CXCR7一shRNA2的慢病毒颗粒LV-CXCR7-shRNA2(病毒滴度为3x 109TU/ml),感染HepG2细胞,CXCR7mRNA和蛋白的表达水平下调.结论:成功构建靶向CXCR7基因的shRNA慢病毒表达载体,可有效抑制人肝癌HepG2细胞CXCR7 mRNA和蛋白的表达.  相似文献   

10.
目的构建针对N-乙酰氨基葡萄糖转移酶(GnT)Ⅲ、Ⅳa和Ⅴ的RNA干扰(RNAi)慢病毒系统,并检测干扰慢病毒在体外小鼠肝癌细胞中对不同GnT表达的抑制作用。方法针对三种基因序列设计合成特异的shRNA序列,并构建干扰慢病毒表达载体,利用病毒包装细胞293T包装生产病毒,感染靶细胞Hca-F后,应用RT-PCR和免疫印迹检测干扰慢病毒对三种N-乙酰氨基葡萄糖转移酶表达的抑制。结果经测序证实三种干扰慢病毒表达载体构建成功,并获得高滴度的感染慢病毒。干扰慢病毒感染靶细胞后能够有效下调三种N-乙酰氨基葡萄糖转移酶的表达。结论干扰慢病毒可有效地抑制三种N-乙酰氨基葡萄糖转移酶GnT-Ⅲ、GnT-Ⅳa和GnT-Ⅴ的表达。  相似文献   

11.
The ability to produce targeted deletions in the mouse genome via homologous recombination has been a hallmark of mouse genetics, and has lead to the production of thousands of gene knockouts. New technologies are making it possible to disrupt gene function in many other species. This article reviews some of these methods, highlighting the powerful combination of lentiviral vectors with RNA interference (RNAi), which allows one to produce transgenic animals expressing short hairpin RNA (shRNA) to “knock down” specific gene expression. Lentiviral transduction of embryos has been shown to be a highly efficient means of transgenesis, and is particularly promising for animals that are considered difficult to genetically modify by DNA pronuclear injection. This technique has been popular for introducing transgenes for shRNA expression into rodents and its utility for creating new genetic models has already been demonstrated. One of the purported advantages of in vivo RNAi is that shRNA expressing transgenes would be expected to act in a dominant nature, resulting in a phenotype in founder animals. However, one possible concern with lentiviral-mediated transgenesis is the potential for mosaicism in founders, and the data for this phenomenon and the potential causes and solutions are discussed. Emphasis is placed on the application of in vivo RNAi, and other reverse genetic methods, for creating new genetic models in the rat.  相似文献   

12.
To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.  相似文献   

13.
14.
15.
In this study, we demonstrate that a minimal self-inactivating (SIN) lentiviral vector (LV) that does not encode any human immunodeficiency virus (HIV) genes is able to induce HIV-specific CD4 and CD8 T cell responses after transduction of dendritic cells (DCs). The LV-DC-primed T cells displayed HIV-specific lytic degranulation, as illustrated by acquisition of CD107a/b expression on the cell surface and up-regulation of active caspase 3. HIV-specific cytotoxic T lymphocyte (CTL) response was consistently detected using different assays, and T cell receptors specific to three prominent HIV epitopes, SL9 (Gag peptide: SLYNTVATL), IV9 (Pol peptide: ILKEPVHGV), and MA10 (In peptide: MASDFNLPPV) were detected using HLA-A0201 peptide-tetramers. These results demonstrate that DCs transduced with the minimal SIN-LV can efficiently induce HIV-specific CD4 and CD8 T cell responses. Since LVs are popular gene transfer tools, our results have fundamental implications for future LV applications and DC vaccine development.  相似文献   

16.
We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.  相似文献   

17.
构建小鼠Smad6基因RNA干扰(RNAi)慢病毒载体,有效沉默骨髓树突状细胞(BMDC)的Smad6基因表达,为构建骨髓致耐受DC用于哮喘等自身免疫疾病的研究。设计小鼠Smad6 shRNA序列,合成、退火,得到双链DNA,与经酶切后的Psih1-H1-copGFP shRNA Vector载体连接产生LV-shSmad6慢病毒载体,并测序鉴定。转染293TN细胞,包装产生慢病毒,测定滴度。感染小鼠骨髓树突细胞,检测Smad6基因的表达状况成功构建Smad6 shRNA的慢病毒载体LV-shSmad6。包装慢病毒,并显著抑制Smad6 mRNA水平及蛋白水平的表达。成功构建出小鼠Smad6基因shR-NA慢病毒载体,为后期研究Smad6基因在哮喘发病机制及新治疗方法提供了稳定的转染细胞载体。  相似文献   

18.
Several studies have shown the ability of human immunodeficiency virus type 1 (HIV1)-based lentiviral vectors to infect nondividing brain and retinal neurons with high efficiency and long-term expression of the transduced gene. We show that purified embryonic motoneurons can be efficiently (>95%) transduced in culture using an HIV1-based lentiviral vector encoding LacZ. Expression of beta-galactosidase was observed for at least 9 days in these conditions. Furthermore, motoneurons transduced with a lentiviral vector expressing glial cell line-derived neurotrophic factor survived in the absence of additional trophic support, showing that the overexpressed protein was biologically active. Our results demonstrate the potential of lentiviral vectors in studying the biological effects of proteins expressed in motoneurons and in the development of future gene therapy for motoneuron diseases.  相似文献   

19.
20.
Lentiviral vectors have been used for gene transfer into the liver but their ability to efficiently transduce quiescent hepatocytes remains controversial. Lentivirus-mediated gene transfer is more efficient in cycling cells. We determine the effect of H-IL6 in the lentiviral transduction. The lentiviral vector was used to transduce HepG2 cells and mice liver cells, previously treated with H-IL6. The highest transduction level was observed in HepG2 cells treated with 30 ng/mL H-IL6 and in the mice that received 4 μg H-IL6. Our results suggest that H-IL6 is an inducer of lentiviral gene transfer into the liver cells without any toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号