首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli , the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium . In E. coli , InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.  相似文献   

2.
An essential component of type III secretion systems (TTSS) is a supramolecular structure termed the needle complex. In Salmonella enterica, at least four proteins make up this structure: InvG, PrgH, PrgK, and PrgI. Another protein, PrgJ, is thought to play a role in the assembly of this structure, but its function is poorly understood. We have analyzed the expression and localization of PrgJ and the needle protein PrgI in different S. enterica serovar Typhimurium mutant strains. We found that the levels of PrgI and PrgJ were significantly reduced in a TTSS-deficient invA mutant strain and that the decreased levels were due to protein instability. In addition, we found that PrgJ, although associated with the needle complex in wild-type S. enterica serovar Typhimurium, was absent from needle complexes obtained from an invJ mutant strain, which exhibits very long needle substructures. We suggest that PrgJ is involved in capping the needle substructure of the needle complex.  相似文献   

3.
The secretion of pathogenicity factors by Salmonella typhimurium is mediated by a type III secretion system that includes an outer membrane protein of the secretin family. Related secretins are also required for f1 phage assembly and type II secretion. When the C-terminal 43 amino acids of the S. typhimurium secretin InvG are added to f1 pIV, the chimeric f1 pIV-'InvG43 protein becomes dependent on the co-expression of another gene, invH , for function in phage assembly. [3H]-palmitic acid labelling, globomycin sensitivity and density gradient flotation were used to demonstrate that InvH is an outer membrane lipoprotein that is processed by signal peptidase II. A complex between chimeric f1 pIV-'InvG43 and InvH was demonstrated in vivo. InvH was shown to be required for the proper localization of InvG in the outer membrane and for the secretion of the virulence factor SipC. These results suggest that InvH and InvG are part of the functional outer membrane translocation complex in type III secretion systems.  相似文献   

4.
Several pathogenic bacteria have evolved a specialized protein secretion system termed type III to secrete and deliver effector proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium uses one such system to mediate entry into nonphagocytic cells. This system is composed of more than 20 proteins which are encoded within a pathogenicity island (SPI-1) located at centisome 63 of its chromosome. A subset of these components form a supramolecular structure, termed the needle complex, that resembles the flagellar hook-basal body complex. The needle complex is composed of a multiple-ring cylindrical base that spans the bacterial envelope and a needle-like extension that protrudes from the bacterial outer surface. Although the components of this structure have been identified, little is known about its assembly. In this study we examined the effect of loss-of-function mutations in each of the type III secretion-associated genes encoded within SPI-1 on the assembly of the needle complex. This analysis indicates that the assembly of this organelle occurs in discrete, genetically separable steps. A model for the assembly pathway of this important organelle is proposed that involves a sec-dependent step leading to the assembly of the base substructure followed by a sec-independent process resulting in the assembly of the needle portion.  相似文献   

5.
The type III secretion pathway is broadly distributed across many parasitic bacterial genera and serves as a mechanism for delivering effector proteins to eukaryotic cell surface and cytosolic targets. While the effectors, as well as the host responses elicited, differ among type III systems, they all utilize a conserved set of 9 to 11 proteins that together form a bacterial envelope-associated secretory organelle or needle complex. The general structure of the needle complex consists of a transenvelope base containing at least three ring-forming proteins (MxiD, MxiJ, and MxiG in Shigella) that is connected to a hollow needle-like extension that projects away from the cell surface. Several studies have shown that the initial steps in needle complex assembly require interactions among the base proteins, although specific details of this process remain unknown. Here we identify a role for another base element in Shigella, MxiM, in interactions with the major outer-membrane-associated ring-forming protein, MxiD. MxiM affects several features of MxiD, including its stability, envelope association, and assembly into homomultimeric structures. Interestingly, many of the effects were also elicited by the inner-membrane-associated base element, MxiJ. We confirmed that MxiM-MxiD and MxiJ-MxiD interactions occur in vivo in the cell envelope, and we present evidence that together these base elements can form a transmembrane structure which is likely an important intermediary in the process of needle complex assembly.  相似文献   

6.
The type III secretion needle complex (NC) of Salmonella typhimurium is a complex secretory system that functions to translocate virulence proteins into eukaryotic cells. Evolutionarily it is related to bacterial flagella. Assembly of the NC occurs through ordered secretion, polymerization, and assembly, and requires the coordinated expression and association of over 20 different proteins. Recent progress in the understanding of the assembly and architecture of the NC is reviewed.  相似文献   

7.
Type III secretion systems, designed to deliver effector proteins across the bacterial cell envelope and the plasma membrane of the target eukaryotic cell, are involved in subversion of eukaryotic cell functions in a variety of human, animal and plant pathogens. In enteropathogenic Escherichia coli (EPEC), several protein substrates for the secretion apparatus were identified, including EspA, EspB and EspD. EspA is a structural protein and the major component of a large transiently expressed filamentous surface organelle that forms a direct link between the bacterium and the host cell, whereas EspD and EspB seem to form the mature translocation pore. Recent studies of the type III secretion systems of Shigella and Salmonella pathogenicity island (SPI)-1 revealed the existence of a macromolecular complex that spans both bacterial membranes and consists of a basal structure with two upper and two lower rings and a needle-like projection that extends outwards from the bacterial surface. MxiH ( Shigella ) and PrgI ( Salmonella ) are the main components of the needle of the type III secretion complex. A needle-like complex has not yet been reported in EPEC. In this study, we investigated EscF, a protein sharing sequence similarity with MxiH and PrgI. We report that EscF is required for type III protein secretion and EspA filament assembly. Moreover, we show that EscF binds EspA, suggesting that EspA filaments are an extension of the type III secretion needle complexes in EPEC.  相似文献   

8.
Type III protein secretion mechanism in mammalian and plant pathogens   总被引:1,自引:0,他引:1  
The type III protein secretion system (TTSS) is a complex organelle in the envelope of many Gram-negative bacteria; it delivers potentially hundreds of structurally diverse bacterial virulence proteins into plant and animal cells to modulate host cellular functions. Recent studies have revealed several basic features of this secretion system, including assembly of needle/pilus-like secretion structures, formation of putative translocation pores in the host membrane, recognition of N-terminal/5' mRNA-based secretion signals, and requirement of small chaperone proteins for optimal delivery and/or expression of effector proteins. Although most of our knowledge about the TTSS is derived from studies of mammalian pathogenic bacteria, similar and unique features are learned from studies of plant pathogenic bacteria. Here, we summarize the most salient aspects of the TTSS, with special emphasis on recent findings.  相似文献   

9.
Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 104 LD50. The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections.  相似文献   

10.
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.  相似文献   

11.
The type III secretion system (T3SS) is required for the virulence of many gram‐negative bacterial human pathogens. It is composed of several structural proteins, forming the secretion needle and its basis, the basal body. In Chlamydia spp., the T3SS inner membrane ring (IM‐ring) of the basal body is formed by the periplasmic part of CdsD (outer ring) and CdsJ (inner ring). Here we describe the crystal structure of the C‐terminal, periplasmic part of CdsD, not including the last 60 residues. Two crystal forms were obtained, grown in three different crystallization conditions. In both crystal forms there is one molecule per asymmetric unit adopting a similar extended structure. The structures consist of three periplasmic domains (PDs) of similar αββαβ topology as seen also in the structures of the homologous PrgH (Salmonella typhimurium) and YscD (Yersinia enterocolitica). Only in the C2 crystal form, there is a C‐terminal additional helix after the PD3 domain. The relative orientation of the three subsequent CdsD PD domains with respect to each other is more extended than in PrgH but less extended than in YscD. Small‐angle X‐ray scattering data show that also in solution this CdsD construct adopts the same elongated shape. In both crystal forms the CdsD molecules are packed in a parallel fashion, using translational crystallographic symmetry. The most extensive crystal contacts are preserved in both crystal forms, suggesting a possible mode of assembly of the CdsD periplasmic part into a 24‐mer complex forming the outer ring of the IM‐ring of the T3SS.  相似文献   

12.
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.  相似文献   

13.
Piecing together the type III injectisome of bacterial pathogens   总被引:2,自引:0,他引:2  
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.  相似文献   

14.
Salmonella enterica are facultative intracellular bacteria that cause intestinal and systemic diseases, and replicate within host cells in a membrane-bound compartment, the Salmonella-containing vacuole. Intravacuolar bacterial replication depends on spatiotemporal regulated interactions with host cell vesicular compartments. Recent studies have shown that type III secretion effector proteins control both the vacuolar membrane dynamics and intracellular positioning of bacterial vacuoles. The functions of these effectors, which are beginning to be understood, disclose a complex hijacking of host cell microtubule motors--kinesins and dynein--and regulators of their function, and suggest interactions with the Golgi complex. Here, we discuss current models describing the mode of action of Salmonella type III secretion effector proteins involved in these processes.  相似文献   

15.
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram‐negative pathogen Salmonella typhimurium and the Gram‐positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.  相似文献   

16.
Type III secretion (T3S) systems are used by numerous Gram-negative pathogenic bacteria to inject virulence proteins into animal and plant host cells. The core of the T3S apparatus, known as the needle complex, is composed of a basal body transversing both bacterial membranes and a needle protruding above the bacterial surface. In Shigella flexneri, IpaD is required to inhibit the activity of the T3S apparatus prior to contact of bacteria with host and has been proposed to assist translocation of bacterial proteins into host cells. We investigated the localization of IpaD by electron microscopy analysis of cross-linked bacteria and mildly purified needle complexes. This analysis revealed the presence of a distinct density at the needle tip. A combination of single particle analysis, immuno-labeling and biochemical analysis, demonstrated that IpaD forms part of the structure at the needle tip. Anti-IpaD antibodies were shown to block entry of bacteria into epithelial cells.  相似文献   

17.
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.  相似文献   

18.
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.  相似文献   

19.
Type III secretion (T3S) systems are used by numerous Gram-negative pathogenic bacteria to inject virulence proteins into animal and plant host cells. The core of the T3S apparatus, known as the needle complex, is composed of a basal body transversing both bacterial membranes and a needle protruding above the bacterial surface. In Shigella flexneri, IpaD is required to inhibit the activity of the T3S apparatus prior to contact of bacteria with host and has been proposed to assist translocation of bacterial proteins into host cells. We investigated the localization of IpaD by electron microscopy analysis of cross-linked bacteria and mildly purified needle complexes. This analysis revealed the presence of a distinct density at the needle tip. A combination of single particle analysis, immuno-labeling and biochemical analysis, demonstrated that IpaD forms part of the structure at the needle tip. Anti-IpaD antibodies were shown to block entry of bacteria into epithelial cells.  相似文献   

20.
The type III secretion system tip complex and translocon   总被引:2,自引:0,他引:2  
The type III secretion machinery of Gram-negative bacteria, also known as the injectisome or needle complex, is composed of a basal body spanning both bacterial membranes and the periplasm, and an external needle protruding from the bacterial surface. A set of three proteins, two hydrophobic and one hydrophilic, are required to allow translocation of proteins from the bacterium to the host cell cytoplasm. These proteins are involved in the formation of a translocation pore, the translocon, in the host cell membrane. Exciting progress has recently been made on the interaction between the translocators and the injectisome needle and the assembly of the translocon in the host cell membrane. As expected, the two hydrophobic translocators insert into the target cell membrane. Unexpectedly, the third, hydrophilic translocator, forms a complex on the distal end of the injectisome needle, the tip complex, and serves as an assembly platform for the two hydrophobic translocators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号