首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Respiration in man during metabolic alkalosis   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
The structural responses of cells in the distal convoluted, connecting, and collecting tubule to acute acid/base changes were investigated by electron microscopy. Acute metabolic acidosis was induced by administration of ammonium chloride, and acute metabolic alkalosis by potassium or sodium bicarbonate. Morphometric analyses were performed on micrographs of randomly selected distal nephron cells. No structural responses were found in distal convoluted tubule cells, connecting tubule cells, or principal cells but prominent changes were observed in intercalated cells (I cells). Thus, the surface density of the luminal membrane in I cells was significantly higher in acidotic animals and lower in KHCO3 alkalotic animals than in controls. On the contrary, the surface density of the membrane that bounds apical vesicles was higher in KHCO3 alkalotic and lower in acidotic animals than in controls. These results suggest that the luminal membrane is internalized during alkalosis and that the membrane that bounds apical vesicles is transferred to the luminal membrane during acidosis. Since a proton translocating ATPase may be present in the luminal membrane the observations are consistent with the possibility that cortical I cells participate in the maintenance of acid/base homeostasis.  相似文献   

6.
7.
A 45-year-old man who was admitted with nausea, vomiting, and abdominal pain was found to have severe metabolic alkalosis, with a PaCO2 of 11.4kPa (85.5 mm Hg), PaO2 of 5.8 kPa (43.5 mm Hg), pH of 7.61, and plasma bicarbonate concentration of 82.0 mmol/l. He was treated with oxygen, intravenous physiological saline, and phenytoin and improved within 48 hours. Radiographs showed gastric outlet obstruction secondary to peptic ulcer, which was treated by surgery. Though sever, the rise in carbon dioxide concentration in this patient was probably lifesaving. The PaCO2 was therefore allowed to fall gradually as the alkalosis was treated. The return of both PaCO2 and plasma bicarbonate values to normal in parallel suggests that hypoventilation compensated for the metabolic alkalosis and emphasises the importance of conservative treatment in cases of metabolic alkalosis.  相似文献   

8.
9.
10.
11.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

12.
13.
14.
We hypothesized that inhibition of carbonic anhydrase in the central nervous system by acetazolamide should limit the rise in cisternal cerebrospinal fluid (CSF) [HCO3-] observed in metabolic alkalosis. To test this hypothesis, isosmotic isonatremic metabolic alkalosis was produced in two groups of anesthetized, paralyzed, and mechanically ventilated dogs (8 in each group). Group II animals received 50 mg/kg of acetazolamide intravenously 1 h before induction of metabolic alkalosis of 5-h duration. Renal effects of acetazolamide were eliminated by ligation of renal pedicles. In both groups cisternal CSF [Na+] remained relatively constant during metabolic alkalosis. In group I CSF [Cl-] decreased 3.6 and 8.2 meq/l, respectively, 2.5 and 5 h after induction of metabolic alkalosis. Respective increments in CSF [HCO3-] were 3.4 and 6.0 meq/l. In acetazolamide-treated dogs, during metabolic alkalosis, increments in CSF [HCO3-] (4.8 and 7.2 meq/l, respectively, at 2.5 and 5 h) and decrements in CSF [Cl-] (9.1 and 13.3 meq/l) were greater than those observed in group I. We conclude that, in dogs with metabolic alkalosis and bilateral ligation of renal pedicles, acetazolamide impairs CSF regulation of HCO3- and Cl- ions; acetazolamide not only failed to impede HCO3- rise but actually appeared to increase it. The mechanisms for these observations are discussed.  相似文献   

15.
Changes in systemic acid-base balance are known to influence acidification in the collecting duct. The H+ secretion in the collecting duct has been shown to be an electrogenic process and it has been suggested that an H-ATPase sensitive to inhibition by N-ethylmaleimide (NEM) is responsible for H+ secretion. This study was designed to determine the effect of metabolic alkalosis on NEM-sensitive ATPase activity in the microdissected segments of the distal nephron. Metabolic alkalosis was produced by giving NaHCO3 to normal rats for 7 days. The plasma total CO2 concentration in the experimental group was 31.5 +/- 1.8 mM compared with 23.4 +/- 1.0 mM in the control group. NEM-sensitive ATPase activity was significantly lower in the cortical collecting duct and in the outer and inner medullary collecting ducts of alkali-loaded rats than those of control rats. There was no significant difference in the enzyme activity between the two groups of animals in the other nephron segments examined. Our results suggest that NEM-sensitive H-APTase activity in all three segments of the collecting duct is modulated by the acid-base status of the animal.  相似文献   

16.
Rebound metabolic alkalosis is a transient alkalemia that is seen during recovery from NH4Cl-induced metabolic acidosis. The persistent elevation of plasma bicarbonate concentration is the result of continuing excretion of net acid by the kidney. Bicarbonate transport by inner medullary collecting ducts has been reported by others to proceed normally (i.e., bicarbonate reabsorption continues in this segment) during rebound metabolic alkalosis. No other segmental responses have been evaluated. Since the surface distal tubule of the rat is known to both reabsorb and secrete bicarbonate in vivo, it was of interest to determine the response of this segment. Our results show that the distal tubule microperfused in vivo during rebound metabolic alkalosis continues to reabsorb significant amounts of bicarbonate, despite the presence of systemic alkalemia that we have previously shown to be associated with distal tubule bicarbonate secretion.  相似文献   

17.
Systematic data are not available with regard to the anticipated appropriate responses of arterial PCO2 to primary alterations in plasma bicarbonate concentration. In the present study, we attempted to rigorously characterize the ventilatory response to chronic metabolic acid-base disturbances of graded severity in the dog. Animals with metabolic acidosis produced by prolonged HCl feeding and metabolic alkalosis of three different modes of generation, i.e., diuretics (ethacrynic acid or chlorothiazide), gastric drainage, and administration of deoxycorticosterone acetate (alone or in conjunction with oral sodium bicarbonate), were examined. The results indicate the existence of a significant and highly predictable ventilatory response to chronic metabolic acid-base disturbances. Moreover, the magnitude of the ventilatory response appears to be uniform throughout a wide spectrum of chronic metabolic acid-base disorders extending from severe metabolic acidosis to severe metabolic alkalosis; on average, arterial PCO2 is expected to change by 0.74 Torr for a 1-meq/l chronic change in plasma bicarbonate concentration of metabolic origin. Furthermore, the data suggest that the ventilatory response to chronic metabolic alkalosis is independent of the particular mode of generation.  相似文献   

18.
19.
20.
The metabolic syndrome (MetS) is a risk factor for type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the transition from MetS to T2DM are unknown. Our goal was to study the potential contribution of butyrylcholinesterase (BChE) to this process. We first determined the hydrolytic activity of BChE in serum from MetS, T2DM and healthy individuals. The ‘Kalow’ variant of BChE (BChE‐K), which has been proposed to be a risk factor for T2DM, was genotyped in the last two groups. Our results show that in MetS patients serum BChE activity is elevated compared to T2DM patients and healthy controls (P < 0.001). The BChE‐K genotype showed similar prevalence in T2DM and healthy individuals, excluding this genotype as a risk factor for T2DM. However, the activity differences remained unexplained. Previous results from our laboratory have shown BChE to attenuate the formation of β‐amyloid fibrils, and protect cultured neurons from their cytotoxicity. Therefore, we next studied the in vitro interactions between recombinant human butyrylcholinesterase and amylin by surface plasmon resonance, Thioflavine T fluorescence assay and cross‐linking, and used cultured pancreatic β cells to test protection by BChE from amylin cytotoxicity. We demonstrate that BChE interacts with amylin through its core domain and efficiently attenuates both amylin fibril and oligomer formation. Furthermore, application of BChE to cultured β cells protects them from amylin cytotoxicity. Taken together, our results suggest that MetS‐associated BChE increases could protect pancreatic β‐cells in vivo by decreasing the formation of toxic amylin oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号