首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for determining permeability coefficients, that are independent of the unstirred water layer (UWL), has been developed. The method was used to determine the cellular permeability coefficient of the rapidly absorbed drug testosterone in monolayers of the human intestinal epithelial cell line, Caco-2. Using a new diffusion cell with an effective stirring system based on a gas lift, the cellular permeability coefficient for testosterone was (1.98 +/- 0.13).10(-4) cm/s which is 3.5-times higher than the permeability coefficient obtained in the unstirred system. The thickness of the UWL obtained with the well stirred diffusion cell was 52 +/- 4 microns. This value is much lower than those previously reported in various well stirred in vitro models. The calculated cellular permeability of testosterone was 13-23-times lower than that for an UWL of the same thickness as the epithelial cell (17-30 microns). We conclude that the permeability of the epithelial monolayer must be included in calculations of the thickness of the UWL.  相似文献   

2.
Quenching of pyrene fluorescence by oxygen was used to determine oxygen diffusion coefficients in phospholipid dispersions and erythrocyte plasma membranes. The fluorescence intensity and lifetime of pyrene in both artificial and natural membranes decreases about 80% in the presence of 1 atm O2, while the fluorescence excitation and emission spectra and the absorption spectrum are unaltered. Assuming the oxygen partition coefficient between membrane and aqueous phase to be 4.4, the diffusion coefficients for oxygen at 37 degrees C are 1.51 X 10(-5) cm2/s in dimyristoyl lecithin vesicles, 9.32 X 10(-6) cm2/s in dipalmitoyl lecithin vesicles, and 7.27 X 10(-6) cm2/s in erythrocyte plasma membranes. The heats of activation for oxygen diffusion are low (less than 3 kcal/degree-mol). A dramatic increase in the diffusion constant occurs at the phase transition of dimyristoyl and dipalmitoyl lecithin, which may result from an increase in either the oxygen diffusion coefficient, partition coefficient, or both. The significance of the change in oxygen diffusion below and above the phase transition for biological membranes is discussed.  相似文献   

3.
Summary In published studies of the relationship between movement of nonelectrolytes across cell membranes and the lipid solubility of these test molecules, it is generally found that a number of the smaller, more water-soluble molecules deviate significantly from the general pattern relating permeability (or reflection coefficient) to lipid solubility. This is often true of the amides, for example, whose reflection coefficients are considerably lower than expected on the basis of lipid solubility. While this has been interpretep in terms of the movement of these solutes through aqueous channels in the membrane, it now appears that many of these deviant molecules may cross the membrane by means of carrier-mediated diffusion, independent of osmotic water flow. This has important implications for studies in which equivalent pore radius has been estimated from the reflection coefficients of small hydrophilic molecules, and for our present concepts of membrane structure.  相似文献   

4.
Estimation of intestinal unstirred layer thickness usually involves inducing transmural potential difference changes by altering the content of the solution used to perfuse the small intestine. Osmotically active solutes, such as mannitol, when added to the luminal solution diffuse across the unstirred water layer (UWL) and induce osmotically dependent changes in potential difference. As an alternative procedure, the sodium ion in the luminal fluid can be replaced by another ion. As the sodium ion diffuses out of the UWL, the change in concentration next to the intestinal membrane alters the transmural potential difference. In both cases, UWL thickness is calculated from the time course of the potential difference changes, using a solution to the diffusion equation. The diffusion equation solution which allows the calculation of intestinal unstirred layer thickness was examined by simulation, using the method of numerical solutions. This process readily allows examination of the time course of diffusion under various imposed circumstances. The existing model for diffusion across the unstirred layer is based on auxiliary conditions which are unlikely to be fulfilled in the same intestine. The present simulation additionally incorporated the effects of membrane permeability, fluid absorption and less than instantaneous bulk phase concentration change. Simulation indicated that changes within the physiologically relevant range in the chosen auxiliary conditions (with the real unstirred layer length kept constant) can alter estimates of the apparent half-time. Consequently, changes in parameters unassociated with the unstirred layer would be misconstrued as alterations in unstirred layer thickness.  相似文献   

5.
Nitric oxide (*NO) has been proposed to play a relevant role in modulating oxidative reactions in lipophilic media like biomembranes and lipoproteins. Two factors that will regulate *NO reactivity in the lipid milieu are its diffusion and solubility, but there is no data concerning the actual diffusion (D) and partition coefficients (KP) of *NO in biologically relevant hydrophobic phases. Herein, a "equilibrium-shift" method was designed to directly determine the *NO and O2 partition coefficients in liposomes and low density lipoprotein (LDL) relative to water. It was found that *NO partitions 4.4- and 3.4-fold in liposomes and LDL, respectively, whereas O2 behaves similarly with values of 3.9 and 2.9, respectively. In addition, actual diffusion coefficients in these hydrophobic phases were determined using fluorescence quenching and found that *NO diffuses approximately 2 times slower than O2 in the core of LDL and 12 times slower than in buffer (DNOLDL=3.9 x 10(-6) cm2 s(-1),DO2LDL=7.0 x 10(-6) cm2 s(-1),DNObuffer=DO2buffer=4.5 x 10(-5) cm2 s(-1)). The influence of *NO and O2 partitioning and diffusion in membranes and lipoproteins on *NO reaction with lipid radicals and auto-oxidation is discussed. Particularly, the 3-4-fold increase in O2 and *NO concentration within biological hydrophobic phases provides quantitative support for the idea of an accelerated auto-oxidation of *NO in lipid-containing structures, turning them into sites of enhanced local production of oxidant and nitrosating species.  相似文献   

6.
Molecular dynamics simulations of a dioleoylphosphocholine (DOPC) lipid bilayer were performed to explore its mechanosensitivity. Variations in the bilayer properties, such as area per lipid, volume, thickness, hydration depth (HD), hydration thickness (HT), lateral diffusion coefficient, and changes in lipid structural order were computed in the membrane tension range 0 to 15dyn/cm. We determined that an increase in membrane tension results in a decrease in the bilayer thickness and HD of ~5% and ~5.7% respectively, whereas area per lipid, volume, and HT/HD increased by 6.8%, 2.4%, and 5% respectively. The changes in lipid conformation and orientation were characterized using orientational (S(2)) and deuterium (S(CD)) order parameters. Upon increase of membrane tension both order parameters indicated an increase in lipid disorder by 10-20%, mostly in the tail end region of the hydrophobic chains. The effect of membrane tension on lipid lateral diffusion in the DOPC bilayer was analyzed on three different time scales corresponding to inertial motion, anomalous diffusion and normal diffusion. The results showed that lateral diffusion of lipid molecules is anomalous in nature due to the non-exponential distribution of waiting times. The anomalous and normal diffusion coefficients increased by 20% and 52% when the membrane tension changed from 0 to 15dyn/cm, respectively. In conclusion, our studies showed that membrane tension causes relatively significant changes in the area per lipid, volume, polarity, membrane thickness, and fluidity of the membrane suggesting multiple mechanisms by which mechanical perturbation of the membrane could trigger mechanosensitive response in cells.  相似文献   

7.
Nanovid (video-enhanced) microscopy was used to determine whether lateral diffusion in the plasma membrane of colloidal gold-tagged lipid molecules is confined or is unrestricted. Confinement could be produced by domains within the plane of the plasma membrane or by filamentous barriers within the pericellular matrix. Fluorescein- phosphatidylethanolamine (F1-PE), incorporated into the plasma membranes of cultured fibroblasts, epithelial cells and keratocytes, was labeled with 30-nm colloidal gold conjugated to anti-fluorescein (anti-F1). The trajectories of the gold-labeled lipids were used to compute diffusion coefficients (DG) and to test for restricted motion. On the cell lamella, the gold-labeled lipids diffused freely in the plasma membrane. Since the gold must move through the pericellular matrix as the attached lipid diffuses in the plasma membrane, this result suggests that any extensive filamentous barriers in the pericellular matrix are at least 40 nm from the plasma membrane surface. The average diffusion coefficients ranged from 1.1 to 1.7 x 10(-9) cm2/s. These values were lower than the average diffusion coefficients (DF) (5.4 to 9.5 x 10(-9) cm2/s) obtained by FRAP. The lower DG is partially due to the pericellular matrix as demonstrated by the result that heparinase treatment of keratocytes significantly increased DG to 2.8 x 10(-9) cm2/s, but did not affect DF. Pericellular matrix viscosity was estimated from the frictional coefficients computed from DG and DF and ranged from 0.5 to 0.9 poise for untreated cells. Heparinase treatment of keratocytes decreased the apparent viscosity to approximately 0.1 poise. To evaluate the presence of domains or barriers, the trajectories and corresponding mean square displacement (MSD) plots of gold-labeled lipids were compared to the trajectories and MSD plots resulting from computer simulations of random walks within corrals. Based on these comparisons, we conclude that, if there are domains limiting the diffusion of F1-PE, most are larger than 5 microns in diameter.  相似文献   

8.
A number of membrane‐permeation models require the incorporation of an unstirred or unstirrable water layer (UWL). An example occurs in PAMPA models when the effective permeation rate of lipophilic acids and bases, Pe, falls behind the expected permeation rate, Pm, at pH values providing a high concentration of unionized species in the donor phase. In such cases, the compound has an apparent pKa of a weaker acid or base. The explanation is that an UWL adjacent to the membrane provides a rate‐limiting diffusion barrier for such compounds. The thickness of the UWL is correlated with the difference between the aqueous pKa and the apparent pKa (pK ). Here, we provide an explanation for the pK term that requires no UWL. It comes from the fact that, in the process of passing into a membrane, an ionizable compound undergoes a change in pKa. At some point along its path into the membrane, the compound attains a maximum free energy, at which point it is as likely to continue into the membrane, as it is to return to the donor phase. This is the transition state for absorption. The pK is the pKa of the compound at the transition state. This is a testable hypothesis (see text). The relevance of absorption to permeation depends on the rate‐limiting step of permeation.  相似文献   

9.
Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.  相似文献   

10.
Vascular endothelial surface-related activities may depend on the lateral mobility of specific cell surface macromolecules. Previous studies have shown that cytokines induce changes in the morphology and surface antigen composition of vascular endothelial cells in vitro and at sites of immune and inflammatory reactions in vivo. The effects of cytokines on membrane dynamic properties have not been examined. In the present study, we have used fluorescence photobleaching recovery (FPR) to quantify the effects of the cytokines tumor necrosis factor (TNF) and immune interferon (IFN-gamma) on the lateral mobilities of class I major histocompatibility complex protein, of an abundant 96,000 Mr mesenchymal cell surface glycoprotein (gp96), and of a phospholipid probe in cultured human endothelial cell (HEC) membranes. Class I protein and gp96 were directly labeled with fluorescein-conjugated monoclonal antibodies; plasma membrane lipid mobility was examined with the phospholipid analogue fluorescein phosphatidylethanolamine (Fl-PE). In untreated, confluent HEC monolayers, diffusion coefficients were 30 x 10(-10) cm2 s-1 for class I protein, 14 x 10(-10) cm2 s-1 for gp96, and 80 x 10(-10) cm2 s-1 for Fl-PE. Fractional mobilities were greater than 80% for each probe. Cultures treated at visual confluence for 3-4 d with either 100 U/ml TNF or 200 U/ml IFN-gamma did not exhibit significant changes in protein or lipid mobilities despite significant changes in cell morphology and membrane antigen composition. In HEC cultures treated concomitantly with TNF and IFN-gamma, however, diffusion coefficients decreased by 71-79% for class I protein, 29-55% for gp96, and 23-38% for Fl-PE. Fractional mobilities were unchanged. By immunoperoxidase transmission electron microscopy, plasma membranes of untreated and cytokine-treated HEC were flat and stained uniformly for class I antigen. "Line" FPR measurements on doubly treated HEC demonstrated isotropic diffusion of class I protein, gp96, and Fl-PE. Finally, although TNF and IFN-gamma retarded the growth of HEC cultures and disrupted the organization of cell monolayers, the slow diffusion rates of gp96 and Fl-PE in confluent doubly treated monolayers were not reproduced in sparse or subconfluent untreated monolayers. We conclude that the slowing of protein and lipid diffusion induced by the combination of TNF and IFN-gamma is not due to plasma membrane corrugations, to anisotropic diffusion barriers, or to decreased numbers of cell-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Molecular dynamics simulations have been performed to explore the distribution and translocation of a set of furocoumarins (psoralen derivatives) inside saturated and partially unsaturated lipid membranes. Within the simulations, strong accumulation of the photodynamic drugs is observed near the polar headgroup region, although the populations also extend out into the membrane/water interface as well as to the membrane center. The computed transverse (Dz) diffusion coefficients are in the range 0.01-0.03 x 10(-5) cm2 s(-1)-significantly slower than those reported for small molecules like water, ethane, and ammonia-and are related to the low mobility inside the polar headgroup region. Trimethylpsoralen (TMP) has a very low free energy barrier to transversion, only approximately 10 kJ/mol, whereas 5- and 8-methoxy psoralens (5-MOP, 8-MOP) have the largest barriers of the compounds studied-between 25 and 40 kJ/mol. Upper bounds to the permeation coefficients, obtained by integrating the resistance profiles across the bilayers, range from 5.2 x 10(-8) cm s(-1) for TMP to 4.1 x 10(-12) cm s(-1) for 5-MOP. The current simulations explain the high level of furocoumarin-lipid membrane complexes found in experimental studies of albino Wistar rats exposed to topical application of 8-MOP, and points to the possibility of membrane photodamage as a viable mechanism in psoralen ultraviolet-A treatment.  相似文献   

12.
Pulsed field gradient NMR was utilized to directly determine the lipid lateral diffusion coefficient for the following macroscopically aligned bilayers: dimyristoylphosphatidylcholine (DMPC), sphingomyelin (SM), palmitoyloleoylphosphatidylcholine (POPC), and dioleoylphosphatidylcholine (DOPC) with addition of cholesterol (CHOL) up to approximately 40 mol %. The observed effect of cholesterol on the lipid lateral diffusion is interpreted in terms of the different diffusion coefficients obtained in the liquid ordered (l(o)) and the liquid disordered (l(d)) phases occurring in the phase diagrams. Generally, the lipid lateral diffusion coefficient decreases linearly with increasing CHOL concentration in the l(d) phase for the PC-systems, while it is almost independent of CHOL for the SM-system. In this region the temperature dependence of the diffusion was always of the Arrhenius type with apparent activation energies (E(A)) in the range of 28-40 kJ/mol. The l(o) phase was characterized by smaller diffusion coefficients and weak or no dependence on the CHOL content. The E(A) for this phase was significantly larger (55-65 kJ/mol) than for the l(d) phase. The diffusion coefficients in the two-phase regions were compatible with a fast exchange between the l(d) and l(o) regions in the bilayer on the timescale of the NMR experiment (100 ms). Thus, strong evidence has been obtained that fluid domains (with size of micro m or less) with high molecular ordering are formed within a single lipid bilayer. These domains may play an important role for proteins involved in membrane functioning frequently discussed in the recent literature. The phase diagrams obtained from the analysis of the diffusion data are in qualitative agreement with earlier published ones for the SM/CHOL and DMPC/CHOL systems. For the DOPC/CHOL and the POPC/CHOL systems no two-phase behavior were observed, and the obtained E(A):s indicate that these systems are in the l(d) phase at all CHOL contents for temperatures above 25 degrees C.  相似文献   

13.
The diffusion of a fluorescent lipid analogue in liquid crystals of the anisotropic P beta, phase of dimyristoylphosphatidylcholine (DMPC) had been found to be highly variable, suggesting structural defect pathways. Fluorescence photobleaching recovery (FPR) experiments imply two effective diffusion pathways with coefficients differing by at least 100. This is consistent with fast diffusion along submicroscopic bands of disordered material ("defects") in the bilayer corrugations characteristic of this phase. Due to strains during transformation from the L alpha phase, the axis of the corrugations is ordinarily disrupted by mosaic patches rotationally disoriented within the mean plane of the molecular bilayers, although larger oriented domains are sometimes adventitiously aligned into microscopically visible striped textures. The corrugations are also systematically aligned along positive disclinations pairs or "oily streaks." Thus, fast diffusion occurs parallel to the disclination lines and along the textured stripes. FPR results yield an upper limit on the effective diffusion in the ordered material of D less than or equal to 2 X 10(-16) cm2/s at 22 degrees C, D less than or equal to 3 X 10(-17) cm2/s at 13 degrees C. In contrast the diffusion coefficient along defect pathways where disordered ribbons are aligned is D approximately 4 X 10(-11) cm2/s at 16 degrees C.  相似文献   

14.
Mobility in the mitochondrial electron transport chain   总被引:1,自引:0,他引:1  
The role of lateral diffusion in mitochondrial electron transport has been investigated by measuring the diffusion coefficients for lipid, cytochrome c, and cytochrome oxidase in membranes of giant mitoplasts from cuprizone-fed mice using the technique of fluorescence redistribution after photobleaching (FRAP). The diffusion coefficient of the phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine is dependent on the technique used to remove the outer mitochondrial membrane. A sonication technique yields mitoplasts with monophasic recovery of the lipid probe (D = 6 X 10(-9) cm2/s), while digitonin-treated mitochondria show biphasic recoveries (D1 = 5 X 10(-9) cm2/s; D2 = 1 X 10(-9) cm2/s). Digitonin appears to incorporate into mitoplasts, giving rise to decreased lipid mobility concomitant with increased rates of electron transfer from succinate to oxygen, in a manner reminiscent of the effects of cholesterol incorporation [Schneider, H., Lemasters, J. J., Hochli, M., & Hackenbrock, C. R. (1980) J. Biol. Chem. 255, 3748-3756]. FRAP measurements on tetramethylrhodamine cytochrome c modified at lysine-39 and on a mixture of active morpholinorhodamine derivatives of cytochrome c gave diffusion coefficients of (3.5-7) X 10(-10) cm2/s depending on the assay medium. With morpholinorhodamine-labeled antibodies purified on a cytochrome oxidase affinity column, the diffusion coefficient for cytochrome oxidase was determined to be 1.5 X 10(-10) cm2/s. The results are discussed in terms of a dynamic aggregate model in which an equilibrium exists between freely diffusing and associated electron-transfer components.  相似文献   

15.
An image-based technique of fluorescence recovery after photobleaching (video-FRAP) was used to measure the lateral diffusion coefficients of a series of nine fluorescent probes in two model lipid bilayer systems, dimyristoylphosphatidylcholine (DMPC) and DMPC/cholesterol (40 mol%), as well as in human stratum corneum-extracted lipids. The probes were all lipophilic, varied in molecular weight from 223 to 854 Da, and were chosen to characterize the lateral diffusion of small compounds in these bilayer systems. A clear molecular weight dependence of the lateral diffusion coefficients in DMPC bilayers was observed. Values ranged from 6.72 x 10(-8) to 16.2 x 10(-8) cm2/s, with the smaller probes diffusing faster than the larger ones. Measurements in DMPC/cholesterol bilayers, which represent the most thorough characterization of small-solute diffusion in this system, exhibited a similar molecular weight dependence, although the diffusion coefficients were lower, ranging from 1.62 x 10(-8) to 5.60 x 10(-8) cm2/s. Lateral diffusion measurements in stratum corneum-extracted lipids, which represent a novel examination of diffusion in this unique lipid system, also exhibited a molecular weight dependence, with values ranging from 0.306 x 10(-8) to 2.34 x 10(-8) cm2/s. Literature data showed that these strong molecular weight dependencies extend to even smaller compounds than those examined in this study. A two-parameter empirical expression is presented that describes the lateral diffusion coefficient in terms of the solute's molecular weight and captures the size dependence over the range examined. This study illustrates the degree to which small-molecule lateral diffusion in stratum corneum-extracted lipids can be represented by diffusion in DMPC and DMPC/cholesterol bilayer systems, and may lead to a better understanding of small-solute transport across human stratum corneum.  相似文献   

16.
The molar partition coefficients of amphiphilic additives, e.g. local anesthetics, between the aqueous phase, the liquid crystal and the gel phase of lipid membrane can be determined based on a combination of phase transition data obtained at high and low concentrations of the lipid in aqueous phase. The data obtained at high lipid concentration allow to find the phase diagram lipid-additive in the aqueous environment. The combination of this diagram with data obtained at low lipid and additive concentrations provides direct information on the concentration of anesthetics in the lipid and thus allows the calculation of the partition coefficient.  相似文献   

17.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

18.
Intracellular diffusion of water   总被引:10,自引:0,他引:10  
Self-diffusion of cell water has been measured at diffusion times ranging from 0.3 ms to 1.0 s for human red cells, yeast, and brine shrimp using various pulsed gradient NMR methods. Intracellular diffusion coefficients and membrane permeabilities are calculated from these data with the aid of previous theoretical results for regularly spaced permeable planar barriers. The intracellular diffusion coefficients of water range from 1.2 X 10(-6) to 6 X 10(-6) cm2/s for the various samples. Outer-membrane permeabilities to water range from 0.0001 to 0.01 cm/s. The self-diffusion coefficient of lipid in a sample of human breast adipose tissue was found to be 1.5 X 10(-7) cm2/s.  相似文献   

19.
Uptake of tetracycline (tc), 2-tetracyclinonitrile (CN-tc), and 9-(N, N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline (DMG-DMDOT) by liposomes containing Tet repressor (TetR) and by Escherichia coli cells overexpressing TetR was examined. TetR specifically binds to tetracyclines, enhances their fluorescence and thereby allows selective detection of tetracyclines that have crossed the membranes. Analysis of the diffusion of tc and DMG-DMDOT into liposomes yielded permeation coefficients of (2.4 +/- 0.6) x 10-9 cm.s-1 and (3.3 +/- 0.8) x 10-9 cm.s-1, respectively. Similar coefficients were obtained for uptake of these tetracyclines by E. coli, indicating that diffusion through the cytoplasmic membrane is the rate-limiting step. The permeation coefficients translate into half-equilibration times of approximately 35 +/- 15 min and explain how efflux pumps can mediate resistance against tetracyclines. Furthermore, diffusion of CN-tc into liposomes was at least 400-fold slower than that of tc, indicating that the carboxamide group at position C2 is required for efficient permeation of tc through lipid membranes and thereby explaining the lack of antibiotic activity of CN-tc.  相似文献   

20.
It has been shown that the blocking of negatively charged tetraphenylborate ion transport in phosphatidylcholine (PC)-cholesterol membranes by the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is dominated by suppression of TPhB- diffusion across the membrane interior, rather than by the decrease of adsorption of TPhB- ions at the membrane surface. The blocking effect can be associated with the decrease of electric potential inside the membrane with respect to that of the aqueous medium, this decreases being proportional to the concentration of 2,4-D in the aqueous solution. It has been estimated that 25 - 30% of the total 2,4-D-induced change of the potential difference is between the plane of absorption of TPhB- and the aqueous solution, and the remaining fraction is between the membrane interior and the absorption plane. The results of this study support the dipolar hypothesis of 2,4-D action in lipid membranes. These conclusions are further supported by measurements changes of electric potential difference across air/water and air/lipid monolayer/water interfaces. It has been found that the electric potential of the nonpolar side of the interface decreases in the presence of neutral molecules of 2,4-D and that this effect becomes more prominent in presence of electrolyte. We have confirmed that PC-cholesterol monolayer cannot be considered as a model for half of the bilayer membrane because of the disagreement between the changes of the interfacial potential difference of PC-cholesterol monolayers and those determined from studied of transport of positive and negative ions across bilayer membranes. In contract, we have found close agreement between the 2,4-D-induced changes of electric potential of the lipid hydrocarbon region in glycerolmonooleate (GMO) membranes and GMO monolayers. We suggest that the action of 2,4-D in lipid membranes is not associated with the changes of orientation of dipoles of lipids constituting the membranes, but rather with a layer of 2,4-D molecules absorbed at the nonpolar/polar membrane boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号