首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Despite the demonstration of a clear biochemical defect, the genetic alterations causing childhood forms of cytochromec oxidase (COX) deficiency remain unknown. The double genetic origin (nuclear and mitochondrial DNA), and the complexity of COX enzyme structure and regulation, indicate the need for genetic iinvestigations of the molecular structure of individual COX subunits. In the present study a new monoclonal antibody, which reacts exclusively with heart-type human COX subunit VIIa (VIIa-H), and other monoclonal antibodies against human COX subunits, were used in the immunohistochemical analysis of skeletal muscle from children with different forms of mitochondrial myopathy with COX deficiency. By immunohistochemical investigation a normal reaction was seenn with antibodies to COX subunits IV, Va+Vb, and VIa+VIc in all four cases, and in two cases with antibodies to COX VIIa-H and VIIa+VIIb. In muscle from a fatal infantile case with cardiac and skeletal muscle involvement, no immunohistochemical reaction was seen with the monoclonal antibody against the tissue-specific subunit VIIa-H. In muscle from an 11-year-old boy with exclusive muscular symptoms and signs, immunohistological reactions were absent with COX subunit VIIa-H and COX subunits VIIa+VIIb, and slightly decreased with COX subunit II, thus demonstrating a different molecular mechanism in each case. It is concluded that the molecular basis of COX deficiency in childhood may vary greatly between patients.  相似文献   

2.
The orientation of the thirteen polypeptides of rat-liver cytochrome c oxidase in the inner mitochondrial membrane was studied by proteolytic digestion of mitoplasts and sonicated particles. After separation by sodium dodecylsulfate gel electrophoresis proteins were transferred on nitrocellulose, and individual polypeptides were identified by incubation with polypeptide-specific antisera, followed by fluorescein-isothiocyanate-conjugated protein A. The three catalytic polypeptides I-III and seven nuclear coded polypeptides (IV, Vb, VIa, VIc, VIIa, VIIb and VIII) were found accessible to proteases from the cytoplasmic phase. Polypeptides II, IV, Va, Vb and VIa were accessible from the matrix phase, indicating a transmembraneous orientation of polypeptides II, IV, Vb and VIa. Together with data on cross-linking and on cytochrome-c-protected labeling of polypeptides, a model of the cytochrome c oxidase complex was developed. It is suggested that the cytochrome c binding site on polypeptide II is surrounded by several nuclear-coded polypeptides, which may modulate the affinity of the enzyme towards cytochrome c.  相似文献   

3.
The N-terminal amino acid sequences and the electrophoretic mobilities of the subunits VIIa, VIIb and VIIc of cytochrome c oxidase purified from human heart were investigated and compared with those from human skeletal muscle and from bovine heart. In purified human heart cytochrome c oxidase, both so-called 'heart-type' and 'liver-type' isoforms of subunit VIIa were found. The first 30 residues of the N-terminal amino acid sequences of these 'heart-type' and 'liver-type' subunits VIIa showed nine differences. The two isoforms of subunit VIIa in human heart were present in almost equal amounts, in contrast to the situation in skeletal muscle, where the 'heart-type' subunit VIIa was predominant. Therefore, our results imply that in human heart a cytochrome c oxidase isoform pattern is present that differs from that found in skeletal muscle. Subunits VIIb and VIIc purified from human heart oxidase proved to be very similar to their bovine heart counterparts. Our direct demonstration of the presence of subunit VIIb, the sequence of which has only recently been identified in the bovine heart enzyme, suggests that human cytochrome c oxidase also contains 13 subunits. We found no evidence for the presence of different isoforms of subunit VIIc in cytochrome c oxidase from human heart and skeletal muscle. We observed clear differences in the electrophoretic mobility of the subunits VIIa,b,c between bovine and human cytochrome c oxidase. On Tricine/glycerol/SDS/polyacrylamide gels the 'heart-type' and 'liver-type' subunits VIIa present in human heart cytochrome c oxidase migrated with almost the same electrophoretic mobility. Subunit VIIb migrated only slightly faster than subunit VIIa, whereas VIIc proved to have the highest electrophoretic mobility on Tricine/SDS/glycerol/polyacrylamide gels. Our findings may have implications for the elucidation of certain tissue-specific cytochrome c oxidase deficiencies in man.  相似文献   

4.
Cytochrome c oxidase was isolated from pig, bovine, rat and human tissues including liver, heart, diaphragm and kidney. The native and the sodium-dodecyl-sulfate (SDS)-dissociated enzymes were labelled under optimal conditions with N-ethyl-[2,3-14C]maleimide before and after reduction with dithiothreitol, separated into 13 subunits by SDS gel electrophoresis and the radioactive bands were visualized by fluorography. In some cases the radioactive bands were cut out and counted. All isozymes were labelled in subunits I, III, Va and VIIb, and in subunit II after reduction. Labelling of subunit Vb was equivocal, and in no case were subunits IV and VIc labelled. All other subunits were labelled tissue-specifically and/or species-specifically. No differences were found between labelling of the native and SDS-dissociated enzyme. By relating the molar amount of bound N-ethylmaleimide to the known amount of cysteines in subunits of bovine heart cytochrome c oxidase, the percentage of -SH group reactivity was calculated. Only the cysteine of subunit Va was found to be 100% reactive. The distinct and different reactivity of subunit VIIb as compared to subunits VIIa and VIIc clearly establishes this polypeptide as an independent subunit of mammalian cytochrome c oxidase.  相似文献   

5.
6.
Rat liver cytochrome c oxidase was separated by SDS-gel electrophoresis into 13 polypeptide bands. Monospecific antisera against the isolated polypeptides VIIa, VIIb and VIIc were raised in rabbits. Cytochrome c oxidase was blotted on nitrocellulose and incubated with the antisera. The antisera reacted only with their corresponding polypeptides, indicating no immunological relationship between polypeptides VIIa, VIIb and VIIc. The data also exclude that these polypeptides are proteolytic breakdown products of larger subunits.  相似文献   

7.
Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2-3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS-PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of cytochrome c oxidase, i.e., stabilization of its quaternary structure.  相似文献   

8.
The immunohistochemical reaction of monoclonal as well as polyclonal antibodies against cytochrome c oxidase (COX) subunits with serial sections of normal human skeletal muscle was investigated. The stronger reactivity of polyclonal antibodies to COX subunits II-III and VIIbc with type I as compared to type II fibres, correlated well with the higher histochemical reactivity of NADH dehydrogenase, succinate dehydrogenase and cytochrome c oxidase in type I fibres. In contrast an almost exclusive reaction of a monoclonal antibody against subunit IV with type I fibre and a preponderant reaction of a polyclonal antibody against subunits Vab with type II fibres was obtained. Antibodies against subunits I, Vb and VIc did not reveal a fibre-type-specific reactivity. The data indicate in human muscle the occurrence of fibre type-specific isozymes of cytochrome c oxidase differing in subunits IV and Va or Vb.  相似文献   

9.
Cytochrome c oxidase was isolated from brown fat tissue of the rat and compared with the isozymes from rat liver and heart, which differ at least in subunits VIa and VIII. ELISA titrations of COX from the three tissues with monospecific antisera to all 13 subunits of the rat liver enzyme showed differences between the three enzymes. The N-terminal amino-acid sequence analysis of subunits VIa and VIII from SDS-PAGE gel bands of the three enzymes indicates the occurrence of three different isozymes in the rat. N-terminal amino-acid sequence analysis of subunits VIa and VIII from cytochrome c oxidase of bovine and human heart demonstrates also species-specific differences in the expression of the 'liver-type' and 'heart-type' of subunits VIa and VIII.  相似文献   

10.
Summary The immunohistochemical reaction of monoclonal as well as polyclonal antibodies against cytochrome c oxidase (COX) subunits with serial sections of normal human skeletal muscle was investigated. The stronger reactivity of polyclonal antibodies to COX subunits II–III and VIIbc with type I as compared to type II fibres, correlated well with the higher histochemical reactivity of NADH dehydrogenase, succinate dehydrogenase and cytochrome c oxidase in type I fibres. In contrast an almost exclusive reaction of a monoclonal antibody against subunit IV with type I fibre and a preponderan reaction of a polyclonal antibody against subunits Vab with type II fibres was obtained. Antibodies against subuntis I, Vb and VIc did not reveal a fibre-type-specific reactivity. The data indicate in human muscle the occurrence of fibre type-specific isozymes of cytochrome c oxidase differing in subunits IV and Va or Vb.  相似文献   

11.
The cytochrome c oxidase enzyme complex of eukaryotes is made up of three mitochondrial-coded subunits and a variable number of nuclear-coded subunits. Some nuclear-coded subunits are present in multiple forms and probably perform a tissue- or development-specific function. A detailed evolutionary analysis of the cytochrome c oxidase subunits that have been sequenced to date is reported here. We have found that gene duplication events from which the liver and heart isoforms of rat subunits VIa and subunit VIII originated can both be dated at about 240 +/- 90 million years ago, long before the radiation of mammalian lineages. Sequence divergence between the processed-type pseudogenes for the subunits IV, VIc and VIII have been estimated. Our results indicate that they arose fairly recently, thus suggesting that retroposition is a continuing process. We show that the rate of silent substitution in mitochondrial-coded subunits is 5-10 times higher than in nuclear-coded subunits; on the other hand replacement rates, although differing from gene to gene, are roughly of the same order of magnitude in both nuclear and mitochondrial genes. In the case of most of the nuclear-coded proteins we observed a slightly greater similarity between rats and cow, which agrees with the data obtained for mitochondrial-coded subunits.  相似文献   

12.
The subunit pattern of immunopurified cytochrome c oxidase from cultured mouse cells and mature tissues of the mouse was investigated by electrophoretic analysis. In mature tissues two forms of cytochrome c oxidase could clearly be identified on the basis of differences in morbidity or staining intensity of subunits VIa and VIII. One form was present in muscle and heart, and the other in liver, kidney and spleen. In lung both forms were found. In the thymus, subunit VIII showed the characteristics of subunit VIII found in muscle and heart, whereas subunit VIa resembled subunit VIa found in liver. This suggest the existence of a third cytochrome c oxidase isoform. The subunits of cytochrome c oxidase from cultured cell lines showed no differences between the various cell lines and resembled those of mature mouse liver tissue. The cytochrome c oxidase isoform from cultured proliferating cells might therefore be the same as the one found in liver. Alternatively, it might represent either a normally occurring fetal isoform, or a form specific for poorly differentiated cultured cells.  相似文献   

13.
HPLC of the beef heart cytochrome oxidase subunits on TSKgel-column has been studied. It was found that the resolution of the subunits depends on the sodium dodecyl sulphate and buffer concentration. Strong interaction of subunits Va, VIc and VIIb with hydrophobic polypeptide chains was observed.  相似文献   

14.
15.
In order to obtain information on the role of subunit III in the function and aggregation state of cytochrome c oxidase, the kinetics of ferrocytochrome c oxidation by the bovine cytochrome c oxidase depleted of its subunit III were studied and compared with those of the oxidase isolated from P. denitrificans which contains only two subunits. The aggregation state of both enzymes dispersed in dodecyl maltoside was also compared. The two-subunit oxidase from P. denitrificans gave linear Eadie-Hofstee plots and the enzyme resulted to be monomeric (Mr = 82 000) both, in gel filtration and sucrose gradient centrifugation studies. The bovine heart subunit III depleted enzyme, under conditions when the P. denitrificans cytochrome c oxidase was in the form of monomers, was found to be dimeric by sucrose gradient centrifugation analysis. At lower enzyme concentrations monomers were, however, detected by gel filtration. Depletion of subunit III was accompanied by the loss of small polypeptides (VIa, VIb and VIIa) and of almost all phospholipid (1-2 molecules were left per molecule of enzyme). The electron-transfer activity of the subunit III-depleted enzyme showed a monophasic Eadie-Hofstee plot, which upon addition of phospholipids became non-linear, similar to that of the control bovine cytochrome c oxidase. One of the roles of subunit III may be that of stabilising the dimers of cytochrome c oxidase. Lack of this subunit and loss of phospholipid is accompanied by a change in the kinetics of electron transfer, which might be the consequence of enzyme monomerisation.  相似文献   

16.
Hydrogen peroxide does more than react with the binuclear center of oxidized bovine cytochrome c oxidase and generate the well-characterized "peroxy" and "ferryl" forms. Hydrogen peroxide also inactivates detergent-solubilized cytochrome c oxidase in a time- and concentration-dependent manner. There is a 70-80% decrease of electron-transport activity, peroxidation of bound cardiolipin, modification of two nuclear-encoded subunits (IV and VIIc), and dissociation of approximately 60% of subunits VIa and VIIa. Modification of subunit VIIc and dissociation of subunit VIIa are coupled events that probably are responsible for the inactivation of cytochrome c oxidase. When cytochrome c oxidase is exposed to 500 microM hydrogen peroxide for 30 min at pH 7.4 and room temperature, subunits IV (modified up to 20%) and VIIc (modified up to 70%) each have an increased mass of 16 Da as detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization mass spectrometry. In each case, the increased mass is caused by oxidation of a tryptophan (Trp19 within subunit VIIc and Trp48 within subunit IV), almost certainly due to formation of hydroxytryptophan. We conclude that hydrogen peroxide-induced oxidation of tryptophan and cardiolipin proceeds via the binuclear center since both modifications are prevented if the binuclear center is first blocked with cyanide. Bound cardiolipin and oxidized tryptophans are localized relatively far from the binuclear center (30-60 A); therefore, oxidation probably occurs by migration of a free radical generated at the binuclear center to these distal reaction sites.  相似文献   

17.
We report the first missense mutation in the mtDNA gene for subunit II of cytochrome c oxidase (COX). The mutation was identified in a 14-year-old boy with a proximal myopathy and lactic acidosis. Muscle histochemistry and mitochondrial respiratory-chain enzymology demonstrated a marked reduction in COX activity. Immunohistochemistry and immunoblot analyses with COX subunit-specific monoclonal antibodies showed a pattern suggestive of a primary mtDNA defect, most likely involving CO II, for COX subunit II (COX II). mtDNA-sequence analysis demonstrated a novel heteroplasmic T-->A transversion at nucleotide position 7,671 in CO II. This mutation changes a methionine to a lysine residue in the middle of the first N-terminal membrane-spanning region of COX II. The immunoblot studies demonstrated a severe reduction in cross-reactivity, not only for COX II but also for the mtDNA-encoded subunit COX III and for nuclear-encoded subunits Vb, VIa, VIb, and VIc. Steady-state levels of the mtDNA-encoded subunit COX I showed a mild reduction, but spectrophotometric analysis revealed a dramatic decrease in COX I-associated heme a3 levels. These observations suggest that, in the COX protein, a structural association of COX II with COX I is necessary to stabilize the binding of heme a3 to COX I.  相似文献   

18.
Y Z Zhang  G Ewart  R A Capaldi 《Biochemistry》1991,30(15):3674-3681
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane[35S]sulfonate and sodium methyl 4-[3H]formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibody (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage product from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.  相似文献   

19.
Cytochrome c oxidase was isolated from rat liver either by affinity chromatography on cytochrome-c--Sepharose 4B or by chromatography on DEAE-Sepharose. Dodecyl sulfate gel electrophoresis of both preparations showed the same subunit pattern consisting of 13 different polypeptides. Kinetic analysis of the two preparations gave a higher Vmax for the enzyme isolated by chromatography on DEAE-Sephacel. Specific antisera were raised in rabbits against nine of the ten nuclear endoded subunits. A monospecific reaction of each antiserum with its corresponding subunit was obtained by Western blot analysis, thus excluding artificial bands in the gel electrophoretic pattern of the isolated enzyme due to proteolysis, aggregation or conformational modification of subunits. With an antiserum against rat liver holocytochrome c oxidase a different reactivity was found by Western blot analysis for subunits VIa and VIII between isolated cytochrome c oxidases from pig liver or kidney and heart or skeletal muscle. For a quantitative analysis of immunological differences a nitrocellulose enzyme-linked immunosorbent assay was developed. Monospecific antisera against 12 of the 13 subunits of rat liver cytochrome c oxidase were titrated with increasing amounts of total mitochondrial proteins from different rat tissues dissolved in dodecyl sulfate and dotted on nitrocellulose. The absorbance of a soluble dye developed by the second peroxidase-conjugated antibody was measured. From the data the following conclusions were obtained: (a) The mitochondrial encoded catalytic subunits I-III of cytochrome c oxidase are probably identical in all rat tissues. (b) All nine investigated nuclear encoded subunits of cytochrome c oxidase showed immunological differences between two or more tissues. Large immunological differences were found between liver, kidney or brain and heart or skeletal muscle. Minor but significant differences were observed for some subunits between heart and skeletal muscle and between liver, kidney and brain. (c) Between corresponding nuclear encoded subunits of cytochrome c oxidase from fetal and adult tissues of liver, heart and skeletal muscle apparent immunological differences were observed. The data could explain cases of fatal infantile myopathy due to cytochrome c oxidase deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号